[1] UNESCO. Launch of united nations world water development report[R]. France: United Nations Educational, Scientific and Cultural Organization, UN, 2018.
[2] ZHANG J, SATTI A, CHEN X, et al. Low-voltage electric field applied into MBR for fouling suppression: Performance and mechanisms[J]. Chemical Engineering Journal, 2015, 273: 223-230. doi: 10.1016/j.cej.2015.03.044
[3] VANYSACKER L, DECLERCK P, BILAD M R, et al. Biofouling on microfiltration membranes in MBRs: Role of membrane type and microbial community[J]. Journal of Membrane Science, 2014, 453(3): 394-401.
[4] BROECK V D, DIERDONCK V, NIJSKENS P, et al. The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR)[J]. Journal of Membrane Science, 2012, 401-402(10): 48-55.
[5] ASAI Y, MIYAHARA M, KOUZUMA A, et al. Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation[J]. Bioresources & Bioprocessing, 2017, 4(1): 30.
[6] LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental Science & Technology, 2006, 38(7): 2281-2285.
[7] MA J X, WANG Z W, HE D, et al. Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment[J]. Water Research, 2015, 78: 98-110. doi: 10.1016/j.watres.2015.03.033
[8] WANG Y K, LI W W, SHENG G P, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15): 5794-5800. doi: 10.1016/j.watres.2013.06.058
[9] IEROPOULOS I, GREENMAN J, MELHUISH C. Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability[J]. International Journal of Energy Research, 2008, 32(13): 1228-1240. doi: 10.1002/er.1419
[10] YIN X F, LI X F, WANG X H, et al. A spontaneous electric field membrane bioreactor with the innovative Cu-nanowires conductive microfiltration membrane for membrane fouling mitigation and pollutant removal[J]. Water Environment Research, 2019, 1: 1-8.
[11] HUANG L H, LI X F, REN Y P, et al. Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell[J]. RSC Advances, 2017, 34(7): 20824-20832. doi: 10.1039/C7RA01014A
[12] LIU J D, LIU L F, GAO B, et al. Integration of microbial fuel cell with independent membrane cathode bioreactor for power generation, membrane fouling mitigation and wastewater treatment[J]. International Journal of Hydrogen Energy, 2014, 39(31): 17865-17872. doi: 10.1016/j.ijhydene.2014.08.123
[13] 国家环境保护总局. 水和废水检测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[14] VIANT M R, PINCETICH C A, HINTON D E, et al. Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1H NMR metabolomics[J]. Aquatic Toxicology, 2006, 76(3/4): 329-342. doi: 10.1016/j.aquatox.2005.10.007
[15] LIU J M, WANG X H, WANG Z W, et al. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater[J]. Water Research, 2017, 110: 74-82. doi: 10.1016/j.watres.2016.12.012
[16] YANG S S, GUO W Q, CHEN Y D, et al. Simultaneous in-situ sludge reduction and nutrient removal in an A2MO-M system: Performances, mechanisms, and modeling with an extended ASM2d model[J]. Water Research, 2016, 88: 524-537. doi: 10.1016/j.watres.2015.09.046
[17] TAN X P, LIU Y J, YAN K H, et al. Differences in the response of soil dehydrogenase activity to Cd contamination are determined by the different substrates used for its determination[J]. Chemosphere, 2017, 169: 324-332. doi: 10.1016/j.chemosphere.2016.11.076
[18] WANG J, BI F H, NGO H H, et al. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment[J]. Bioresource Technology, 2016, 200: 420-425. doi: 10.1016/j.biortech.2015.10.042
[19] 吴金坤. PVDF的特性及其生产现状[J]. 化工新型材料, 1998(12): 10-13.
[20] WANG L, WEI J F, ZHAO K Y, et al. Preparation and characterization of high-hydrophilic polyhydroxy functional PP hollow fiber membrane[J]. Materials Letters, 2015, 159: 189-192. doi: 10.1016/j.matlet.2015.06.089
[21] LIU J D, LIU L F, GAO B, et al. Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation[J]. Journal of Membrane Science, 2013, 430: 196-202. doi: 10.1016/j.memsci.2012.11.046
[22] WANG Y P, LIU X W, LI W W, et al. A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment[J]. Applied Energy, 2012, 98: 230-235. doi: 10.1016/j.apenergy.2012.03.029
[23] ZHOU G W, ZHOU Y H, ZHOU G Q, et al. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation[J]. Bioresource Technology, 2015, 196: 648-655. doi: 10.1016/j.biortech.2015.08.032
[24] ZHANG G, ZHANG H, MA Y, et al. Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation[J]. Enzyme and Microbial Technology, 2014, 60: 56-63. doi: 10.1016/j.enzmictec.2014.04.005
[25] SU X, TIAN Y, SUN Z, et al. Performance of a combined system of microbial fuel cell and membrane bioreactor: Wastewater treatment, sludge reduction, energy recovery and membrane fouling[J]. Biosensors & Bioelectronics, 2013, 49(22): 92-98.
[26] LI H, TIAN Y, ZUO W, et al. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell[J]. Bioresource Technology, 2016, 205: 104-110. doi: 10.1016/j.biortech.2016.01.042
[27] YAO S, HE Y L, LI Y S, et al. Effect of the membrane electrode assemble design on the performance of single chamber microbial fuel cells[J]. Energy Procedia, 2014, 61: 1947-1951. doi: 10.1016/j.egypro.2014.12.249
[28] MALAMIS S, KATSOU E, TAKOPOULOS K, et al. Assessment of metal removal, biomass activity and RO concentrate treatment in an MBR-RO system[J]. Journal of Hazardous Materials, 2012, 38(1): 23-31.
[29] THRASH J C, COATES J D. Review: Direct and indirect electrical stimulation of microbial metabolism[J]. Environmental Science & Technology, 2008, 42(11): 3921-3931.
[30] SUNEETHI S, JOSEPH K. ANAMMOX process start up and stabilization with an anaerobic seed in anaerobic membrane bioreactor (AnMBR)[J]. Bioresource Technology, 2011, 102(19): 8860-8867. doi: 10.1016/j.biortech.2011.06.082
[31] EMMA F, SCALSCHI L, LLORENS E, et al. ${\rm{NH}}_4^ + $ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation[J]. Journal of Experimental Botany, 2015, 66(21): 6777-6790. doi: 10.1093/jxb/erv382
[32] RODRIGUES C G. Influence of the concentration, temperature and electric field intensity on the electron mobility in n-doped zinc sulphide[J]. European Physical Journal B, 2009, 72(3): 405-408. doi: 10.1140/epjb/e2009-00372-3
[33] FLESZAR B, PO̵SZYŃSKA J. An attempt to define benzene and phenol electrochemical oxidation mechanism[J]. Electrochimica Acta, 1985, 30(1): 31-42. doi: 10.1016/0013-4686(85)80055-4
[34] BEMAN J M, POPP B N, FRANCIS C A. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California[J]. Isme Journal, 2008, 2(4): 429-441. doi: 10.1038/ismej.2007.118
[35] YANG S, YANG F, FU Z, et al. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal[J]. Bioresource Technology, 2009, 100(8): 2369-2374. doi: 10.1016/j.biortech.2008.11.022
[36] LI Y, HE Y, OHANDJA D, et al. Simultaneous nitrification-denitrification achieved by an innovative internal-loop airlift MBR: Comparative study[J]. Bioresource Technology, 2008, 99(13): 5867-5872. doi: 10.1016/j.biortech.2007.10.001
[37] TANG B, SONG H, BIN L, et al. Determination of the profile of DO and its mass transferring coefficient in a biofilm reactor packed with semi-suspended bio-carriers[J]. Bioresource Technology, 2017, 241: 54-62. doi: 10.1016/j.biortech.2017.05.071
[38] XIONG J, FU D, SINGH R P, et al. Structural characteristics and development of the cake layer in a dynamic membrane bioreactor[J]. Separation and Purification Technology, 2016, 167: 88-96. doi: 10.1016/j.seppur.2016.04.040
[39] ROMERA-CASTILLO C, ÁLVAREZ-SALGADO X A, GALÍ M, et al. Combined effect of light exposure and microbial activity on distinct dissolved organic matter pools. A seasonal field study in an oligotrophic coastal system (Blanes Bay, NW Mediterranean)[J]. Marine Chemistry, 2013, 148: 44-51. doi: 10.1016/j.marchem.2012.10.004
[40] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3
[41] BURKE M, AUGENSTEIN L. A comparison of the effects of ultraviolet and ionizing radiations on trypsin activity and on its constituent amino acids[J]. Biochemical Journal, 1969, 114(3): 535-545. doi: 10.1042/bj1140535
[42] CORY R M, KAPLAN L A. Biological lability of streamwater fluorescent dissolved organic matter[J]. Limnology and Oceanography, 2012, 57(5): 1347-1360. doi: 10.4319/lo.2012.57.5.1347
[43] SWEENEY J A, ASHER S A. Tryptophan UV resonance Raman excitation profiles[J]. Journal of Physical Chemistry B, 1990, 94(12): 4784-4791. doi: 10.1021/j100375a009
[44] OBA T, MAENO Y, NAGAO M, et al. Cellular redox state protects acetaldehyde-induced alteration in cardiomyocyte function by modifying Ca2+ release from sarcoplasmic reticulum[J]. AJP Heart and Circulatory Physiology, 2008, 294(1): 121-133. doi: 10.1152/ajpheart.00520.2007
[45] ZHANG H L, FANG W, WANG Y P, et al. Phosphorus removal in an enhanced biological phosphorus removal process: Roles of extracellular polymeric substances[J]. Environmental Science & Technology, 2013, 47(20): 11482-11489.
[46] WANG R D, PENG Y Z, CHENG Z L, et al. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system[J]. Bioresource Technology, 2014, 169: 307-312. doi: 10.1016/j.biortech.2014.06.040