[1] NA C, ZHANG Y, QUAN X, et al. Evaluation of the detoxification efficiencies of coking wastewater treated by combined anaerobic-anoxic-oxic (A2O) and advanced oxidation process[J]. Journal of Hazardous Materials, 2017, 338: 186-193. doi: 10.1016/j.jhazmat.2017.05.037
[2] YANG W, LI X, PAN B, et al. Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer[J]. Water Research, 2013, 47(13): 4730-4738. doi: 10.1016/j.watres.2013.05.032
[3] BAI Y, SUN Q, SUN R, et al. Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters[J]. Environmental Science & Technology, 2011, 45(5): 1940-1948.
[4] ZHU X, NI J, LAI P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes[J]. Environmental Technology, 2013, 43(17): 4347-4355.
[5] OU H S, WEI C H, MO C H, et al. Novel insights into anoxic/aerobic1/aerobic2 biological fluidized-bed system for coke wastewater treatment by fluorescence excitation-emission matrix spectra coupled with parallel factor analysis[J]. Chemosphere, 2014, 113: 158-164. doi: 10.1016/j.chemosphere.2014.04.102
[6] LI J, YUAN X, ZHAO H, et al. Highly efficient one-step advanced treatment of biologically pretreated coking wastewater by an integration of coagulation and adsorption process[J]. Bioresource Technology, 2017, 247: 1206-1209.
[7] ZHANG T, DING L, REN H, et al. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology[J]. Water Research, 2009, 43(20): 5209-5215. doi: 10.1016/j.watres.2009.08.054
[8] CHU L, WANG J, DONG J, et al. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide[J]. Chemosphere, 2012, 86(4): 409-414. doi: 10.1016/j.chemosphere.2011.09.007
[9] XIN D, ZHANG R, GAN Z, et al. Treatment of high strength coking wastewater by supercritical water oxidation[J]. Fuel, 2013, 104: 77-82. doi: 10.1016/j.fuel.2010.09.018
[10] REN G, ZHOU M, ZHANG Q, et al. Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load[J]. Water Research, 2019, 154: 336-348. doi: 10.1016/j.watres.2019.02.013
[11] LI J, WU J, SUN H, et al. Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation[J]. Desalination, 2016, 380: 43-51. doi: 10.1016/j.desal.2015.11.020
[12] JIN X, LI E, LU S, et al. Coking wastewater treatment for industrial reuse purpose: Combining biological processes with ultrafiltration, nanofiltration and reverse osmosis[J]. Journal of Environmental Sciences, 2013, 25(8): 1565-1574. doi: 10.1016/S1001-0742(12)60212-5
[13] WANG J, JI Y, ZHANG F, et al. Treatment of coking wastewater using oxic-anoxic-oxic process followed by coagulation and ozonation[J]. Carbon Resources Conversion, 2019, 2(2): 151-156. doi: 10.1016/j.crcon.2019.06.001
[14] ALDACO R, GAREA A, IRABIEN A. Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor[J]. Water Research, 2007, 41(4): 810-818. doi: 10.1016/j.watres.2006.11.040
[15] DAMTIE M M, HAILEMARIAM R H, WOO Y C, et al. Membrane-based technologies for zero liquid discharge and fluoride removal from industrial wastewater[J]. Chemosphere, 2019, 236: 124288. doi: 10.1016/j.chemosphere.2019.07.019
[16] YU W Z, GREGORY J, GRAHAM N. Regrowth of broken hydroxide flocs: Effect of added fluoride[J]. Environmental Science & Technology, 2016, 50(4): 1828-1833.
[17] MARTIN R B. Ternary complexes of Al3+ and F with a third ligand[J]. Coordination Chemistry Reviews, 1996, 149(1): 23-32. doi: 10.1016/0010-8545(95)01170-6
[18] LIU T, YANG B, GRAHAM N, et al. Mitigation of NOM fouling of ultrafiltration membranes by pre-deposited heated aluminum oxide particles with different crystallinity[J]. Journal of Membrane Science, 2016, 544: 359-367.
[19] VENDITTI F, CUOMO F, GIANSALVO G, et al. Fluorides decontamination by means of aluminum polychloride based commercial coagulant[J]. Journal of Water Process Engineering, 2018, 26: 182-186. doi: 10.1016/j.jwpe.2018.10.012
[20] DUAN J, GREGORY J. Coagulation by hydrolysing metal salts[J]. Advances in Colloid & Interface Science, 2003, 100-102: 475-502.
[21] YU W, LIU T, GREGORY J, et al. Aggregation of nano-sized alum-humic primary particle[J]. Separation & Purification Technology, 2012, 99: 44-49.
[22] LIU L, YANG L Q, LIANG H W, et al. Bio-inspired fabrication of hierarchical FeOOH nanostructure array films at the air-water interface: Their hydrophobicity and application for water treatment[J]. ACS Nano, 2013, 7(2): 1368-1378. doi: 10.1021/nn305001r
[23] WECKLER B, LUTZ H D. Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganéite (β), lepidocrocite (γ), and feroxyhite (δ)[J]. European Journal of Solid State & Inorganic Chemistry, 1998, 35(8/9): 531-544.
[24] JIN X, LIU Y, WANG Y, et al. Towards a comparison between the hybrid ozonation-coagulation (HOC) process using Al- and Fe-based coagulants: Performance and mechanism[J]. Chemosphere, 2020, 253: 126625. doi: 10.1016/j.chemosphere.2020.126625
[25] MITROVIC B, MILACIC R. Speciation of aluminium in forest soil extracts by size exclusion chromatography with UV and ICP-AES detection and cation exchange fast protein liquid chromatography with ETAAS detection[J]. Science of the Total Environment, 2000, 258(3): 183-194. doi: 10.1016/S0048-9697(00)00569-6