[1] 刘一才, 樊森清, 肖泽仪. 页岩气压裂返排液膜蒸馏处理[J]. 化学工程与装备, 2019, 2(2): 134-136.
[2] 刘宇程, 吴东海, 袁建梅, 等. 膜蒸馏处理页岩气井压裂返排液[J]. 环境工程学报, 2017, 11(1): 48-54. doi: 10.12030/j.cjee.201509096
[3] BILGEN S. New horizon in energy: Shale gas[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 637-645. doi: 10.1016/j.jngse.2016.09.014
[4] SHAH M, SHAH S, SIRCAR A. A comprehensive overview on recent developments in refracturing technique for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 350-364. doi: 10.1016/j.jngse.2017.07.019
[5] SHAFFER D L, CHAVES L H A, BEN-SASSON M, et al. Desalination and reuse of high-salinity shale gas produced water: Drivers, technologies, and future directions[J]. Environmental Science & Technology, 2013, 47(17): 9569-9583.
[6] ZOLFAGHARI A, DEHGHANPOUR H, NOEL M, et al. Laboratory and field analysis of flowback water from gas shales[J]. Journal of Unconventional Oil and Gas Resources, 2016, 14: 113-127. doi: 10.1016/j.juogr.2016.03.004
[7] AHMADUN F, PENDASHTEH A, ABDULLAH L C, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials, 2009, 170(2/3): 530-551.
[8] 王兵, 王佩洁, 祝伟, 等. 混凝-吸附联用预处理页岩气压裂返排液[J]. 环境工程学报, 2019, 13(10): 2475-2481. doi: 10.12030/j.cjee.201811198
[9] VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48(15): 8334-8348.
[10] KARGBO D M, WILLHELM R G, CAMPBELL D J. Natural gas plays in the marcellus shale: Challenges and potential opportunities[J]. Environmental Science & Technology, 2010, 44(15): 5679-5684.
[11] ALKHUDHIRI A, DARWISH N, HILAL N. Membrane distillation: A comprehensive review[J]. Desalination, 2012, 287: 2-18. doi: 10.1016/j.desal.2011.08.027
[12] TIJING L D, WOO Y C, CHOI J, et al. Fouling and its control in membrane distillation: A review[J]. Journal of Membrane Science, 2015, 475: 215-244. doi: 10.1016/j.memsci.2014.09.042
[13] SU C, HORSEMAN T, CAO H, et al. Robust superhydrophobic membrane for membrane distillation with excellent scaling resistance[J]. Environmental Science & Technology, 2019, 53(20): 11801-11809.
[14] NAIDU G, PENG Y, JI S, et al. Review of thermal efficiency and heat recycling in membrane distillation processes[J]. Desalination, 2015, 367: 223-239. doi: 10.1016/j.desal.2015.04.013
[15] NAIDU G, TIJING L, JOHIR M A H, et al. Hybrid membrane distillation: Resource, nutrient and energy recovery[J]. Journal of Membrane Science, 2020, 599: 117832. doi: 10.1016/j.memsci.2020.117832
[16] 田苗苗, 李雪梅, 殷勇, 等. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化工进展, 2015, 27(8): 1033-1041.
[17] NAIDU G, JEONG S, CHOI Y, et al. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential[J]. Journal of Membrane Science, 2017, 524: 565-575. doi: 10.1016/j.memsci.2016.11.068
[18] CHRISTIE K S S, YIN Y, LIN S, et al. Distinct behaviors between gypsum and silica scaling in membrane distillation[J]. Environmental Science & Technology, 2020, 54(1): 568-574.
[19] DOW N, GRAY S, LI J, et al. Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment[J]. Desalination, 2016, 391: 30-42. doi: 10.1016/j.desal.2016.01.023
[20] BOO C, LEE J, ELIMELECH M. Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation[J]. Environmental Science & Technology, 2016, 50(22): 12275-12282.
[21] REZAEI M, WARSINGER D M, LIENHARD V J H, et al. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention[J]. Water Research, 2018, 139: 329-352. doi: 10.1016/j.watres.2018.03.058
[22] KIM H W, YUN T, HONG S, et al. Retardation of wetting for membrane distillation by adjusting major components of seawater[J]. Water Research, 2020, 175: 115677. doi: 10.1016/j.watres.2020.115677
[23] ISRAELACHVILI J, PASHLEY R. The hydrophobic interaction is long range, decaying exponentially with distance[J]. Nature, 1982, 300: 341-342. doi: 10.1038/300341a0
[24] ZHU Z, LIU Y, HOU H, et al. Dual-bioinspired design for constructing membranes with superhydrophobicity for direct contact membrane distillation[J]. Environmental Science and Technology, 2018, 52: 3027-3036. doi: 10.1021/acs.est.7b06227
[25] JIA K, CHEN Y, CHUNG T. Design of omniphobic interfaces for membrane distillation: A review[J]. Water Research, 2019, 162: 64-77. doi: 10.1016/j.watres.2019.06.056
[26] TUTEJA A, CHOI W, MA M, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1623. doi: 10.1126/science.1148326
[27] DING D, MAO H, CHEN X, et al. Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions[J]. Journal of Membrane Science, 2018, 565: 303-310. doi: 10.1016/j.memsci.2018.08.035
[28] WANG K, HOU D, WANG J, et al. Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation[J]. Applied Surface Science, 2018, 450: 57-65. doi: 10.1016/j.apsusc.2018.04.180
[29] WANG K, HOU D, QI P, et al. Development of a composite membrane with underwater-oleophobic fibrous surface for robust anti-oil-fouling membrane distillation[J]. Journal of Colloid and Interface Science, 2019, 537: 375-383. doi: 10.1016/j.jcis.2018.11.040
[30] AERTS T, CLAUWAERT J. Thermodynamic parameters involved in hydrophobic interaction[J]. Journal of Chemical Education, 1986, 63(11): 993-995. doi: 10.1021/ed063p993
[31] ZHOU H, GUO Z. Superwetting Janus membranes: Focusing on unidirectional transport behaviors and multiple applications[J]. Journal of Materials Chemistry A, 2019, 7: 12921-12950. doi: 10.1039/C9TA02682G