[1] LIU R, GUO B, REN A, et al. The chemical and oxidation characteristics of semi-dry flue gas desulfurization ash from a steel factory[J]. Waste Management and Research, 2010, 28: 865-871. doi: 10.1177/0734242X09339952
[2] ZAREMBA T, MOKROSZ W, HEHLMANN J, et al. Properties of the wastes produced in the semi-dry FGD installation[J]. Journal of Thermal Analysis and Calorimetry, 2008, 93(2): 439-443. doi: 10.1007/s10973-007-8112-x
[3] LIANG H, SHI L, YANG G. Improving sludge dewaterability by adding the semi-dry flue gas desulfurization residue under microwave radiation[J]. Clean -Soil, Air, Water, 2014, 42(9): 1239-1247. doi: 10.1002/clen.201200644
[4] HE J, SHI L. Modified flue gas desulfurization residue (MFGDR): A new type of acidic soil ameliorant and its effect on rice planting[J]. Journal of Cleaner Production, 2012, 24: 159-167. doi: 10.1016/j.jclepro.2011.11.065
[5] MA X, KANEKO T, TASHIMO T, et al. Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed[J]. Chemical Engineering Science, 2000, 55: 4643-4652. doi: 10.1016/S0009-2509(00)00090-7
[6] WANG X, LI Y, ZHU T, et al. Simulation of the heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid model[J]. Chemical Engineering Science, 2015, 264: 479-486. doi: 10.1016/j.cej.2014.11.038
[7] LI X, CHEN Q, MA B, et al. Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics[J]. Fuel, 2012, 102: 674-680. doi: 10.1016/j.fuel.2012.07.010
[8] DUABN S, LIAO H, CHENG F, et al. Investigation into the synergistic effects in hydrated gelling systems containing fly ash, desulfurization gypsum and steel slag[J]. Construction and Building Materials, 2018, 187: 1113-1120. doi: 10.1016/j.conbuildmat.2018.07.241
[9] KOST D A, BIGHAM J M, STEHOUWER R C, et al. Chemical and physicalproperties of dry flue gas desulfurization products[J]. Journal of Environmental Quality, 2005, 34: 676-686. doi: 10.2134/jeq2005.0676
[10] 李茜. 半干法脱硫灰中CaSO3低温转化技术研究[J]. 河北工业科技, 2010, 27(2): 118-135. doi: 10.7535/hbgykj.2010yx02015
[11] DONG Y, REN X, ZHANG S, et al. Research on oxidation of CaSO3 in dry desulhurizatoin slag[J]. Environmental Engineering, 2012, 30(6): 95-97.
[12] 康凌晨, 卢丽君, 李富智, 等. 半干法烧结烟气脱硫灰的化学成分分析方法研究[J]. 化学工程与装备, 2016, 45(10): 210-212.
[13] BIGHAM J M, KOST D A R, STEHOUWER C, et al. Mineralogical and engineering characteristics of dry flue gas desulfurization products[J]. Fuel, 2005, 84: 1839-1848. doi: 10.1016/j.fuel.2005.03.018
[14] 董悦, 任旭, 张硕, 等. 干法脱硫渣中亚硫酸钙氧化研究[J]. 环境工程, 2012, 30(6): 95-97.
[15] CHENG C, AMAYA M, LIN S, et al. Leaching characterization of dry flue gas desulfurization materials produced from different flue gas sources in China[J]. Fuel, 2017, 204: 195-205. doi: 10.1016/j.fuel.2017.05.016
[16] SHI L, XU P, XIE K, et al. Preparation of a modified flue gas desulphurization residueand its effect on pot sorghum growth and acidic soil amelioration[J]. Journal of Hazardous Materials, 2011, 192: 978-985. doi: 10.1016/j.jhazmat.2011.05.102
[17] 郭斌, 卞京凤, 任爱玲. 半干法烧结烟气脱硫灰中亚硫酸钙氧化研究[J]. 环境污染与防治, 2009, 31(7): 1-4. doi: 10.3969/j.issn.1001-3865.2009.07.002
[18] PAULA R, MEDEIROS J L, QUEIROZ O, et al. Fluidized bed treatment of residues of semi-dry flue gas desulfurizatiunits of coal-fired power plants for conversion of sulfites to sulfates[J]. Energy Conversion and Management, 2017, 143: 173-187. doi: 10.1016/j.enconman.2017.03.078
[19] CAILLAHUA M C, MOURA F J. Technical feasibility for use of FGD gypsum as an additive setting time retarder for portland cement[J]. Journal of Materials Research and Technology, 2018, 7(2): 190-197. doi: 10.1016/j.jmrt.2017.08.005
[20] 詹鹏, 杨新亚. 高碱性烟气脱硫灰中亚硫酸钙含量分析方法[J]. 环境科学与技术, 2013, 36(3): 155-159.
[21] 纪宪坤. 流化床燃煤固硫灰渣几种特性利用研究[D]. 重庆: 重庆大学, 2007.
[22] LIU H, FENG Y, LIU H, et al. Study of the bed agglomeration in the straw-fired fluidized bed[J]. Energy Sources, 2010, 32(15): 1470-1478. doi: 10.1080/15567030902756113