[1] IWAMOTO M. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over cupper ion-exchanged zeolites[J]. Shokubai, 1990, 32: 430-433.
[2] HELD W, KÖNIG A, RICHTER T, et al. Catalytic NOx reduction in net oxidizing exhaust gas[J]. SAE Transactions, 1990, 99: 209-216.
[3] YUAN M H, DENG W Y, DONG S L, et al. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene[J]. Chemical Engineering Journal, 2018, 353: 839-848. doi: 10.1016/j.cej.2018.07.201
[4] CHAIEB T, DELANNOY L, LOUIS C, et al. On the origin of the optimum loading of Ag on Al2O3 in the C3H6-SCR of NOx[J]. Applied Catalysis B: Environmental, 2013, 142-143: 780-784. doi: 10.1016/j.apcatb.2013.06.010
[5] KOMVOKIS V G, ILIOPOULOU E F, VASALOS I A, et al. Development of optimized Cu-ZSM-5 deNOx catalytic materials both for HC-SCR applications and as FCC catalytic additives[J]. Applied Catalysis A: General, 2007, 325(2): 345-352. doi: 10.1016/j.apcata.2007.02.035
[6] PAN H, SU Q F, CHEN J, et al. Promotion of Ag/H-BEA by Mn for lean NO reduction with propane at low temperature[J]. Environmental Science & Technology, 2009, 43(24): 9348-9353.
[7] OHTSUKA H, TABATA T. Influence of Si/Al ratio on the activity and durability of Pd-ZSM-5 catalysts for nitrogen oxide reduction by methane[J]. Applied Catalysis B: Environmental, 2000, 26(4): 275-284. doi: 10.1016/S0926-3373(00)00127-2
[8] 张涛, 任丽丽, 林励吾. 甲烷选择催化还原NO研究进展[J]. 催化学报, 2004, 25(1): 75-83. doi: 10.3321/j.issn:0253-9837.2004.01.017
[9] BELLMANN A, ATIA H, BENTRUP U, et al. Mechanism of the selective reduction of NOx by methane over Co-ZSM-5[J]. Applied Catalysis B: Environmental, 2018, 230: 184-193. doi: 10.1016/j.apcatb.2018.02.051
[10] LI Y, ARMOR J N. Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen[J]. Applied Catalysis B: Environmental, 1992, 1(4): L31-L40. doi: 10.1016/0926-3373(92)80050-A
[11] LI Y J, BATTAVIO P J, ARMOR J N. Effect of water vapor on the selective reduction of NO by methane over cobalt-exchanged ZSM-5[J]. Journal of Catalysis, 1993, 142(2): 561-571. doi: 10.1006/jcat.1993.1231
[12] LÓNYI F, SOLT H E, PÁSZTI Z, et al. Mechanism of NO-SCR by methane over Co,H-ZSM-5 and Co,H-mordenite catalysts[J]. Applied Catalysis B: Environmental, 2014, 150-151: 218-229. doi: 10.1016/j.apcatb.2013.12.024
[13] COSTILLA I O, SANCHEZ M D, VOLPE M A, et al. Ce effect on the selective catalytic reduction of NO with CH4 on Pd-mordenite in the presence of O2 and H2O[J]. Catalysis Today, 2011, 172(1): 84-89. doi: 10.1016/j.cattod.2011.03.025
[14] GIL B, JANAS J, WŁOCH E, et al. The influence of the initial acidity of HFER on the status of Co species and catalytic performance of CoFER and InCoFER in CH4-SCR-NO[J]. Catalysis Today, 2008, 137(2): 174-178. doi: 10.1016/j.cattod.2008.01.004
[15] MENDES A N, ZHOLOBENKO V L, THIBAULT-STARZYK F, et al. On the enhancing effect of Ce in Pd-MOR catalysts for NOx CH4-SCR: A structure-reactivity study[J]. Applied Catalysis B: Environmental, 2016, 195: 121-131. doi: 10.1016/j.apcatb.2016.05.004
[16] LI Y J, ARMOR J N. Selective Catalytic reduction of NO with methane on gallium catalysts[J]. Journal of Catalysis, 1994, 145(1): 1-9. doi: 10.1006/jcat.1994.1001
[17] KIKUCHI E, YOGO K. Selective catalytic reduction of nitrogen monoxide by methane on zeolite catalysts in an oxygen-rich atmosphere[J]. Catalysis Today, 1994, 22(1): 73-86. doi: 10.1016/0920-5861(94)80093-6
[18] SHIMIZU K, SATSUMA A, HATTORI T. Selective catalytic reduction of NO by hydrocarbons on Ga2O3/Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 1998, 16(4): 319-326. doi: 10.1016/S0926-3373(97)00088-X
[19] MIYAHARA Y, TAKAHASHI M, MASUDA T, et al. Selective catalytic reduction of NO with C1~C3 reductants over solvothermally prepared Ga2O3-Al2O3 catalysts: Effects of water vapor and hydrocarbon uptake[J]. Applied Catalysis B: Environmental, 2008, 84(1): 289-296. doi: 10.1016/j.apcatb.2008.04.005
[20] TAKAHASHI M, INOUE N, NAKATANI T, et al. Selective catalytic reduction of NO with methane on γ-Ga2O3-Al2O3 solid solutions prepared by the glycothermal method[J]. Applied Catalysis B: Environmental, 2006, 65(1): 142-149. doi: 10.1016/j.apcatb.2006.01.007
[21] WATANABE T, MIKI Y, MASUDA T, et al. Performance of γ-Ga2O3-Al2O3 solid solutions prepared by spray pyrolysis for CH4-SCR of NO[J]. Applied Catalysis A: General, 2011, 396(1): 140-147. doi: 10.1016/j.apcata.2011.02.005
[22] MASUDA T, WATANABE T, MIYAHARA Y, et al. Synthesis of Ga2O3-Al2O3 catalysts by a coprecipitation method for CH4-SCR of NO[J]. Topics in Catalysis, 2009, 52(6/7): 699-706.
[23] 周皞, 苏亚欣, 戚越舟, 等. 水蒸气对甲烷在金属铁表面还原NO行为的影响[J]. 燃料化学学报, 2014, 42(11): 1378-1386. doi: 10.3969/j.issn.0253-2409.2014.11.016
[24] ZHOU H, SU Y X, LIAO W Y, et al. NO reduction by propane over monolithic cordierite-based Fe/Al2O3 catalyst: Reaction mechanism and effect of H2O/SO2[J]. Fuel, 2016, 182: 352-360. doi: 10.1016/j.fuel.2016.05.116
[25] 董士林, 苏亚欣, 刘欣, 等. Fe/Ti-PILC用于C3H6选择性催化还原NO的研究[J]. 燃料化学学报, 2018, 46(10): 1231-1239. doi: 10.3969/j.issn.0253-2409.2018.10.011
[26] 李前程, 苏亚欣, 董士林, 等. Fe-PILC在贫燃条件下催化丙烯选择性还原NO[J]. 燃料化学学报, 2018, 46(10): 1240-1248. doi: 10.3969/j.issn.0253-2409.2018.10.012
[27] 杨溪, 苏亚欣, 钱文燕, 等. Fe-Ag/Al2O3 催化丙烯还原NO的实验研究[J]. 燃料化学学报, 2017, 45(11): 1365-1375. doi: 10.3969/j.issn.0253-2409.2017.11.012
[28] YUAN M H, SU Y X, DENG W Y, et al. Porous clay heterostructures (PCHs) modified with copper ferrite spinel as catalyst for SCR of NO with C3H6[J]. Chemical Engineering Journal, 2019, 375: 122091. doi: 10.1016/j.cej.2019.122091
[29] MRAD R, COUSIN R, POUPIN C, et al. Propene oxidation and NO reduction over MgCu-Al(Fe) mixed oxides derived from hydrotalcite-like compounds[J]. Catalysis Today, 2015, 257: 98-103. doi: 10.1016/j.cattod.2015.02.020
[30] FENG X B, KEITH H W. FeZSM-5: A durable SCR catalyst for NOx removal from combustion streams[J]. Journal of Catalysis, 1997, 166(2): 368-376. doi: 10.1006/jcat.1997.1530
[31] 苏亚欣, 任立铭, 苏阿龙, 等. 甲烷在金属铁及氧化铁表面还原NO的研究[J]. 燃料化学学报, 2013, 41(11): 1393-1400.
[32] 苏亚欣, 邓文义, 苏阿龙. 甲烷在氧化铁表面还原NO的特性与反应机理研究[J]. 燃料化学学报, 2013, 41(9): 1129-1135. doi: 10.3969/j.issn.0253-2409.2013.09.016
[33] AREÁN C O, BELLAN A L, MENTRUIT M P, et al. Preparation and characterization of mesoporous γ-Ga2O3[J]. Microporous and Mesoporous Materials, 2000, 40(1): 35-42. doi: 10.1016/S1387-1811(00)00240-7
[34] AREÁN C O, DELGADO M R, MONTOUILLOUT V, et al. Synthesis and characterization of spinel-type gallia-alumina solid solutions[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2005, 631(11): 2121-2126. doi: 10.1002/zaac.200570027
[35] HANEDA M, KINTAICHI Y, SHIMADA H, et al. Selective reduction of NO with propene over Ga2O3-Al2O3: Effect of sol-gel method on the catalytic performance[J]. Journal of Catalysis, 2000, 192(1): 137-148. doi: 10.1006/jcat.2000.2831
[36] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. doi: 10.1515/pac-2014-1117
[37] WATANABE T, MIKI Y, MASUDA T, et al. Pore structure of γ-Ga2O3-Al2O3 particles prepared by spray pyrolysis[J]. Microporous and Mesoporous Materials, 2011, 145(1): 131-140. doi: 10.1016/j.micromeso.2011.05.002
[38] 高俊华, 刘平, 吉可明, 等. GaZSM-5分子筛的合成、表征及其在甲醇转化制烃(MTH)反应中的催化性能[J]. 燃料化学学报, 2018, 46(4): 465-472. doi: 10.3969/j.issn.0253-2409.2018.04.012
[39] MIYAHARA Y, WATANABE T, MASUDA T, et al. Evaluation of catalytic activity of Ga2O3-Al2O3 solid solutions for CH4-SCR by UV-vis spectra after adsorption of C3H6 as a probe[J]. Journal of Catalysis, 2008, 259(1): 36-42. doi: 10.1016/j.jcat.2008.07.007
[40] WANDELT K. Photoemission studies of adsorbed oxygen and oxide layers[J]. Surface Science Reports, 1982, 2(1): 1-121. doi: 10.1016/0167-5729(82)90003-6
[41] YANG S, GUO Y, YAN N, et al. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Applied Catalysis B: Environmental, 2011, 101(3): 698-708. doi: 10.1016/j.apcatb.2010.11.012
[42] LIU Y M, XU J, HE L, et al. Facile synthesis of Fe-loaded mesoporous silica by a combined detemplation−incorporation process through Fenton’s chemistry[J]. The Journal of Physical Chemistry C, 2008, 112(42): 16575-16583. doi: 10.1021/jp802202v
[43] ZHANG Q H, LI Y, AN D L, et al. Catalytic behavior and kinetic features of FeOx/SBA-15 catalyst for selective oxidation of methane by oxygen[J]. Applied Catalysis A: General, 2009, 356(1): 103-111. doi: 10.1016/j.apcata.2008.12.031
[44] TIAN T F, ZHAN M C, WANG W D, et al. Surface properties and catalytic performance in methane combustion of La0.7Sr0.3Fe1−yGayO3−δ perovskite-type oxides[J]. Catalysis Communications, 2009, 10(5): 513-517. doi: 10.1016/j.catcom.2008.10.028
[45] 乐向晖, 张栖, 付名利, 等. SO2对La0.8K0.2Cu0.05Mn0.95O3钙钛矿催化剂氧化碳烟的影响[J]. 无机化学学报, 2009, 25(7): 1170-1176. doi: 10.3321/j.issn:1001-4861.2009.07.006
[46] 叶青, 王瑞璞, 徐柏庆. 柠檬酸溶胶-凝胶法制备的Ce1-xZrxO2: 结构及其氧移动性[J]. 物理化学学报, 2006, 22(1): 33-37. doi: 10.3866/PKU.WHXB20060107
[47] GUO D Y, WU Z P, LI P G, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology[J]. Optical Materials Express, 2014, 4(5): 1067-1076. doi: 10.1364/OME.4.001067
[48] LI L D, SHEN Q, LI J J, et al. Iron-exchanged FAU zeolites: Preparation, characterization and catalytic properties for N2O decomposition[J]. Applied Catalysis A: General, 2008, 344(1): 131-141. doi: 10.1016/j.apcata.2008.04.011
[49] CAPELA S, CATALÃO R, RIBEIRO M F, et al. Methanol interaction with NO2: An attempt to identify intermediate compounds in CH4-SCR of NO with Co/Pd-HFER catalyst[J]. Catalysis Today, 2008, 137(2): 157-161. doi: 10.1016/j.cattod.2007.11.048
[50] FIERRO G, MORETTI G, FERRARIS G, et al. A Mössbauer and structural investigation of Fe-ZSM-5 catalysts: Influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by C3H8[J]. Applied Catalysis B: Environmental, 2011, 102(1): 215-223. doi: 10.1016/j.apcatb.2010.12.001
[51] SHAO C T, LANG W Z, YAN X, et al. Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: Effects of support and loading amount[J]. RSC Advances, 2017, 7(8): 4710-4723. doi: 10.1039/C6RA27204E
[52] EL-MALKI E-M, VAN SANTEN R A, SACHTLER W M H. Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: Identification of acid sites[J]. The Journal of Physical Chemistry B, 1999, 103(22): 4611-4622. doi: 10.1021/jp990116l
[53] DATKA J, TUREK A M, JEHNG J M, et al. Acidic properties of supported niobium oxide catalysts: An infrared spectroscopy investigation[J]. Journal of Catalysis, 1992, 135(1): 186-199. doi: 10.1016/0021-9517(92)90279-Q
[54] BARZETTI T, SELLI E, MOSCOTTI D, et al. Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts[J]. Journal of the Chemical Society, Faraday Transactions, 1996, 92(8): 1401-1407. doi: 10.1039/ft9969201401
[55] 吴越. 取代硫酸、氢氟酸等液体酸催化剂的途径[J]. 化学进展, 1998, 10(2): 158-171. doi: 10.3321/j.issn:1005-281X.1998.02.007
[56] LÓNYI F, SOLT H E, VALYON J, et al. The SCR of NO with methane over In,H- and Co,In,H-ZSM-5 catalysts: The promotional effect of cobalt[J]. Applied Catalysis B: Environmental, 2012, 117-118: 212-223. doi: 10.1016/j.apcatb.2012.01.022
[57] KANTCHEVA M, VAKKASOGLU A S. Cobalt supported on zirconia and sulfated zirconia I: FT-IR spectroscopic characterization of the NOx species formed upon NO adsorption and NO/O2 coadsorption[J]. Journal of Catalysis, 2004, 223(2): 352-363. doi: 10.1016/j.jcat.2004.02.007