[1] |
ZHANG T, BO W, LI X, et al. Achieving partial nitrification in a continuous post-denitrification reactor treating low C/N sewage[J]. Chemical Engineering Journal, 2017, 335: 330-337.
|
[2] |
YANG Y, ZHANG L, CHENG J, et al. Microbial community evolution in partial nitritation/anammox process: From sidestream to mainstream[J]. Bioresource Technology, 2018, 251: 327-337. doi: 10.1016/j.biortech.2017.12.079
|
[3] |
WANG Y, WANG Y, WEI Y, et al. In-situ restoring nitrogen removal for the combined partial nitritation-anammox process deteriorated by nitrate build-up[J]. Biochemical Engineering Journal, 2015, 98: 127-136. doi: 10.1016/j.bej.2015.02.028
|
[4] |
WANG H, XU G, QIU Z, et al. NOB suppression in pilot-scale mainstream nitritation-denitritation system coupled with MBR for municipal wastewater treatment[J]. Chemosphere, 2019, 216: 633-639. doi: 10.1016/j.chemosphere.2018.10.187
|
[5] |
JARDIN N, HENNERKES J. Full-scale experience with the deammonification process to treat high strength sludge water: A case study[J]. Water Science and Technology, 2012, 65: 447-455. doi: 10.2166/wst.2012.867
|
[6] |
QIAN W, PENG Y, LI X, et al. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition[J]. Bioresource Technology, 2017, 243: 1247-1250. doi: 10.1016/j.biortech.2017.07.119
|
[7] |
XU G, XU X, YANG F, et al. Partial nitrification adjusted by hydroxylamine in aerobic granules under high DO and ambient temperature and subsequent Anammox for low C/N wastewater treatment[J]. Chemical Engineering Journal, 2012, 213: 338-345. doi: 10.1016/j.cej.2012.10.014
|
[8] |
ZEKKER I, KROON K, RIKMANN E, et al. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor[J]. Biodegradation, 2012, 23: 739-749. doi: 10.1007/s10532-012-9549-6
|
[9] |
HAO X, MCM V L. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process[J]. Biotechnology & Bioengineering, 2010, 77(3): 266-277.
|
[10] |
MA B, WANG S, CAO S, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016, 200: 981-990. doi: 10.1016/j.biortech.2015.10.074
|
[11] |
GILBERT E M, AGRAWAL S, BRUNNER F, et al. Response of different Nitrospira species to anoxic periods depends on operational DO[J]. Environmental Science & Technology, 2014, 48: 2934-2941.
|
[12] |
SATOSHI O, MAMORU O, YOSHITAKA T, et al. Development of long-term stable partial nitrification and subsequent anammox process[J]. Bioresource Technology, 2011, 102(13): 6801-6807. doi: 10.1016/j.biortech.2011.04.011
|
[13] |
HARPER W F, TERADA A, POLY F, et al. The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures[J]. Biotechnology and Bioengineering, 2009, 102: 714-724. doi: 10.1002/bit.22121
|
[14] |
XU G J, XU X C, YANG F L, et al. Partial nitrification adjusted by hydroxylamine in aerobic granules under high DO and ambient temperature and subsequent Anammox for low C/N wastewater treatment[J]. Chemical Engineering Journal, 2012, 213(12): 338-345.
|
[15] |
LIU W, YANG D, CHEN W, et al. High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures[J]. Bioresource Technology, 2017, 231: 45-52. doi: 10.1016/j.biortech.2017.01.050
|
[16] |
JUBANY I, LAFUENTE J, BAEZA J A, et al. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on oxygen uptake rate measurements[J]. Water Research, 2009, 43: 2761-2772. doi: 10.1016/j.watres.2009.03.022
|