[1] ZHANG J N, XIAO J F, CHEN X F, et al. Allowance and allocation of industrial volatile organic compounds emission in China for year 2020 and 2030[J]. Journal of Environmental Science, 2018, 69: 155-165. doi: 10.1016/j.jes.2017.10.003
[2] HUI L R, LIU X G, TAN Q W, et al. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China[J]. Science of the Total Environment, 2019, 650: 2624-2639. doi: 10.1016/j.scitotenv.2018.10.029
[3] HU R Y, LIU G J, ZHANG H, et al. Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei[J]. Ecotoxicology and Environmental Safety, 2018, 160: 301-307. doi: 10.1016/j.ecoenv.2018.05.056
[4] ZHANG X Y, GAO B, CREAMER A E, et al. Adsorption of VOCs onto engineered carbon materials: A review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. doi: 10.1016/j.jhazmat.2017.05.013
[5] HARIZ R, RIOSANZ J I, MERCIER C, et al. Absorption of toluene by vegetable oil-water emulsion in scrubbing tower: Experiments and modeling[J]. Chemical Engineering Science, 2017, 157: 264-271. doi: 10.1016/j.ces.2016.06.008
[6] BELAISSAOUI B, MOULLEC Y L, FAVRE E. Energy efficiency of a hybrid membrane/condensation process for VOC (volatile organic compounds) recovery from air: A generic approach[J]. Energy, 2016, 95: 291-302. doi: 10.1016/j.energy.2015.12.006
[7] MUHAMMAD S K, SHAIKH A R, MOHAMMAD M H. Catalytic oxidation of volatile organic compounds (VOCs): A review[J]. Atmospheric Environment, 2016, 140: 117-134. doi: 10.1016/j.atmosenv.2016.05.031
[8] SAVITA K P, VEERAPANDIAN C L, NATHALIE D G, et al. Abatement of VOCs using packed bed non-thermal plasma reactors: A review[J]. Catalysts, 2017, 7: 1-33.
[9] ZHANG S H, YOU J P, CHRISTIAN K. Current advances of VOCs degradation by bioelectrochemical systems: A review[J]. Chemical Engineering Journal, 2018, 334: 2625-2637. doi: 10.1016/j.cej.2017.11.014
[10] 席劲瑛, 武俊良, 胡洪营, 等. 工业VOCs气体处理技术应用状况调查分析[J]. 中国环境科学, 2012, 32(11): 1955-1960. doi: 10.3969/j.issn.1000-6923.2012.11.005
[11] 栾志强, 郝郑平, 王喜芹. 工业固定源VOCs治理技术分析评估[J]. 环境科学, 2011, 32(12): 2216-2227.
[12] QIN C H, GUO H, LIU P, et al. Toluene abatement through adsorption and plasma oxidation using ZSM-5 mixed with γ-Al2O3, TiO2 or BaTiO3[J]. Journal of Industrial and Engineering Chemistry, 2018, 63: 449-455. doi: 10.1016/j.jiec.2018.03.005
[13] AKIRA M. Generation of non-thermal plasma combined with catalysts and their application in environmental technology[J]. Catalysis Today, 2013, 211: 2-8. doi: 10.1016/j.cattod.2013.03.029
[14] QIN C H, GUO H, BAI W W, et al. Kinetics study on non-thermal plasma mineralization of adsorbed toluene over γ-Al2O3 hybrid with zeolite[J]. Journal of Hazardous Materials, 2019, 369: 430-438. doi: 10.1016/j.jhazmat.2019.01.098
[15] ARNE M V, MORENT R, NATHALIE D G, et al. Non-thermal plasmas for non-catalytic and catalytic VOC abatement[J]. Journal of Hazardous Materials, 2011, 195: 30-54. doi: 10.1016/j.jhazmat.2011.08.060
[16] 王保伟, 王超, 徐艳, 等. 介质阻挡放电等离子体反应器降解盐酸四环素[J]. 化工学报, 2018, 69(4): 1687-1694.
[17] KIM H H, YOSHIYUKI T, NOBUAKI N, et al. A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review[J]. Catalysis Today, 2015, 256: 13-22. doi: 10.1016/j.cattod.2015.04.009
[18] ZHANG H B, LI K, SHU C H, et al. Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor[J]. Chemical Engineering Journal, 2014, 256: 107-118. doi: 10.1016/j.cej.2014.06.105
[19] TANG X L, GAO F Y, WANG J G, et al. Comparative study between single- and double-dielectric barrier discharge reactor for nitric oxide removal[J]. Industrial & Engineering Chemistry Research, 2014, 53: 6197-6203.
[20] 李云霞, 朱承驻, 陈天虎, 等. 介质阻挡放电反应器中的二硫化碳降解特性[J]. 环境科学研究, 2013, 26(2): 188-193.
[21] LEE B, KIM D W, PARK D W. Dielectric barrier discharge reactor with the segmented electrodes for decomposition of toluene adsorbed on bare-zeolite[J]. Chemical Engineering Journal, 2019, 357: 188-197. doi: 10.1016/j.cej.2018.09.104
[22] 赵卫东, 蔡忆昔, 韩文赫, 等. 同轴圆柱结构DBD装置放电功率的模拟计算及实验研究[J]. 高压电器, 2010, 46(6): 25-28.
[23] 马天鹏, 钟方川. 估算线筒式介质阻挡放电场强和电子平均动能的方法[J]. 核聚变与等离子体物理, 2017, 37(4): 399-403.
[24] 侯世英, 曾鹏, 刘坤, 等. 单介质与双介质结构介质阻挡放电水处理性能的比较[J]. 高电压技术, 2012, 38(7): 1562-1567.
[25] YAO X H, ZHANG J, LIANG X H, et al. Plasma-catalytic removal of toluene over the supported manganese oxides in DBD reactor: Effect of the structure of zeolites support[J]. Chemosphere, 2018, 208: 922-930. doi: 10.1016/j.chemosphere.2018.06.064
[26] WANG B W, CHI C M, XU M, et al. Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge[J]. Chemical Engineering Journal, 2017, 322: 679-692. doi: 10.1016/j.cej.2017.03.153
[27] OSMAN K, MARC A D. A comparative study of dilute VOCs treatment in a non-thermal plasma reactor[J]. Chemical Engineering Journal, 2016, 201: 308-315.
[28] KIM H H, OGATA A, SHIGERU F. Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma[J]. Applied Catalysis B: Environmental, 2008, 79: 356-367. doi: 10.1016/j.apcatb.2007.10.038
[29] ZHANG H B, LI K, SUN T H, et al. The removal of styrene using a dielectric barrier discharge (DBD) reactor and the analysis of the by-products and intermediates[J]. Research on Chemical Intermediates, 2013, 39(3): 1021-1035. doi: 10.1007/s11164-012-0664-0
[30] ZHENG B, HAN H, YANG S L, et al. Vertically-oriented graphenes supported Mn3O4 as advanced catalysts in post plasma-catalysis for toluene decomposition[J]. Applied Surface Science, 2018, 436: 570-578. doi: 10.1016/j.apsusc.2017.12.081
[31] ZHU R Y, MAO Y B, JIANG L Y, et al. Performance of chlorobenzene removal in a nonthermal plasma catalysis reactor and evaluation of its byproducts[J]. Chemical Engineering Journal, 2015, 279: 463-471. doi: 10.1016/j.cej.2015.05.043
[32] CHANG T, SHEN Z X, HUANG Y, et al. Post-plasma-catalytic removal of toluene using MnO2-Co3O4 catalysts and their synergistic mechanism[J]. Chemical Engineering Journal, 2018, 348: 15-25. doi: 10.1016/j.cej.2018.04.186
[33] 吴萧, 刘盛余, 何廷宇, 等. 介质阻挡放电低温等离子体技术处理3种代表性VOC[J]. 环境工程学报, 2017, 11(10): 5502-5508. doi: 10.12030/j.cjee.201612064