Whitman W B, Coleman D C, Wiebe W J. Prokaryotes:The unseen majority[J]. Proceedings of the National Academy of Sciences, 1998, 95(12):6578-6583
|
Roca-Saavedra P, Mendez-Vilabrille V, Miranda J M, et al. Food additives, contaminants and other minor components:Effects on human gut microbiota-A review[J]. Journal of Physiology and Biochemistry, 2018, 74(1):69-83
|
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59
|
Yatsunenko T, Rey F E, Manary M J, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222
|
Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728):1635-1638
|
Ouwehand A, Vesterlund S. Health aspects of probiotics[J]. IDrugs The Investigational Drugs Journal, 2003, 6(6):573-580
|
Aron-Wisnewsky J, Doré J, Clement K. The importance of the gut microbiota after bariatric surgery[J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9(10):590
|
Goodrich J K, Waters J L, Poole A C, et al. Human genetics shape the gut microbiome[J]. Cell, 2014, 159(4):789-799
|
Zuo T, Kamm M A, Colombel J F, et al. Urbanization and the gut microbiota in health and inflammatory bowel disease[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15:440-452
|
Frazier T H, DiBaise J K, McClain C J. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury[J]. Journal of Parenteral and Enteral Nutrition, 2011, 35(5_suppl):14S-20S
|
Chen L, Hu C, Lai N L S, et al. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish[J]. Environmental Pollution, 2018, 240:17-26
|
Jakobsson H E, Rodríguez-Piñeiro A M, Schütte A, et al. The composition of the gut microbiota shapes the colon mucus barrier[J]. EMBO Reports, 2015, 16(2):164-177
|
Sánchez B, Delgado S, Blanco-Míguez A, et al. Probiotics, gut microbiota, and their influence on host health and disease[J]. Molecular Nutrition & Food Research, 2017, 61(1):1600240
|
Sekirov I, Russell S L, Antunes L C M, et al. Gut microbiota in health and disease[J]. Physiological Reviews, 2010, 90(3):859-904
|
王全楚, 步子恒, 李青上. 肠肝轴的现代概念及其在肝脏疾病中的作用[J]. 胃肠病学和肝病学杂志, 2015, 24(9):1155-1158
Wang Q C, Bu Z H, Li Q S. The current role of gut-liver axis in liver diseases[J]. Chinese Journal of Gastroenterology & Hepatology, 2015, 24(9):1155-1158(in Chinese)
|
Jin Y, Wu S, Zeng Z, et al. Effects of environmental pollutants on gut microbiota[J]. Environmental Pollution, 2017, 222:1-9
|
Gasmi T, Khouni I, Ghrabi A. Assessment of heavy metals pollution using multivariate statistical analysis methods in Wadi El Bey (Tunisia)[J]. Desalination and Water Treatment, 2016, 57(46):22152-22165
|
Nordberg G F, Fowler B A, Nordberg M. Handbook on the Toxicology of Metals[M]. ScienceDirect, 2014:265-267
|
Richardson J B, Dancy B C, Horton C L, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota[J]. Scientific Reports, 2018, 8(1):6578
|
Liu Y, Li Y, Liu K, et al. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract[J]. PloS One, 2014, 9(2):e85323
|
Zhang W, Guo R, Yang Y, et al. Long-term effect of heavy-metal pollution on diversity of gastrointestinal microbial community of Bufo raddei[J]. Toxicology Letters, 2016, 258:192-197
|
Zhai Q, Li T, Yu L, et al. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice[J]. Science Bulletin, 2017, 62(12):831-840
|
Yang H, Wang J, Lv Z, et al. Metatranscriptome analysis of the intestinal microorganisms in Pardosa pseudoannulata in response to cadmium stress[J]. Ecotoxicology and Environmental Safety, 2018, 159:1-9
|
Jafarpour D, Shekarforoush S S, Ghaisari H R, et al. Impact of synbiotic diets including inulin, Bacillus coagulans and Lactobacillus plantarum on intestinal microbiota of rat exposed to cadmium and mercury[J]. Veterinary Science Development, 2015, 5(2):6061
|
Kim M, Qie Y, Park J, et al. Gut microbial metabolites fuel host antibody responses[J]. Cell Host & Microbe, 2016, 20(2):202-214
|
Breton J, Daniel C, Dewulf J, et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure[J]. Toxicology Letters, 2013, 222(2):132-138
|
Ilett K F, Tee L B, Reeves P T, et al. Mebolism of drugs and other xenobiotics in the gut lumen and wall[J]. Pharmacology & Therapeutics, 1990, 46(1):67-93
|
Kashyap P C, Marcobal A, Ursell L K, et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice[J]. Gastroenterology, 2013, 144(5):967-977
|
Dong X, Shulzhenko N, Lemaitre J, et al. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh[J]. PloS One, 2017, 12(12):e0188487
|
Lu K, Abo R P, Schlieper K A, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice:An integrated metagenomics and metabolomics analysis[J]. Environmental Health Perspectives, 2014, 122(3):284-291
|
Guo X, Liu S, Wang Z, et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron[J]. Chemosphere, 2014, 112:1-8
|
Yu H, Wu B, Zhang X X, et al. Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut microbiota[J]. Environmental Science & Technology, 2016, 50(13):7189-7197
|
Chi L, Bian X, Gao B, et al. The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome[J]. Toxicological Sciences, 2017, 160(2):193-204
|
Singh P, Chowdhuri D K. Environmental presence of hexavalent but not trivalent chromium causes neurotoxicity in exposed Drosophila melanogaster[J]. Molecular Neurobiology, 2017, 54(5):3368-3387
|
Ivankovic S, Preussmann R. Absence of toxic and carcinogenic effects after administration of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats[J]. Food and Cosmetics Toxicology, 1975, 13(3):347-351
|
Upreti R, Shrivastava R, Chaturvedi U. Gut microflora & toxic metals:Chromium as a model[J]. Indian Journal of Medical Research, 2004, 119:49-59
|
Wu G, Xiao X, Feng P, et al. Gut remediation:A potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1[J]. Scientific Reports, 2017, 7(1):15000
|
Beier E E, Holz J D, Sheu T J, et al. Elevated lifetime lead exposure impedes osteoclast activity and produces an increase in bone mass in adolescent mice[J]. Toxicological Sciences, 2015, 149(2):277-288
|
Xia J, Lu L, Jin C, et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 209:1-8
|
Gao B, Chi L, Mahbub R, et al. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways[J]. Chemical Research in Toxicology, 2017, 30(4):996-1005
|
Younan S, Sakita G Z, Albuquerque T R, et al. Chromium(Ⅵ) bioremediation by probiotics[J]. Journal of the Science of Food and Agriculture, 2016, 96(12):3977-3982
|
Potera C. POPs and gut microbiota:Dietary exposure alters ratio of bacterial species[J]. Environmental Health Perspectives, 2015, 123(7):A187
|
Stegeman J J, Lech J J. Cytochrome P-450 monooxygenase systems in aquatic species:Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure[J]. Environmental Health Perspectives, 1991, 90:101-109
|
Van de Wiele T, Vanhaecke L, Boeckaert C, et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites[J]. Environmental Health Perspectives, 2004, 113(1):6-10
|
Bagi A, Riiser E S, Molland H S, et al. Gastrointestinal microbial community changes in Atlantic cod (Gadus morhua) exposed to crude oil[J]. BMC Microbiology, 2018, 18(1):25
|
Ribière C, Peyret P, Parisot N, et al. Oral exposure to environmental pollutant benzo[a] pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model[J]. Scientific Reports, 2016, 6:31027
|
Defois C, Ratel J, Denis S, et al. Environmental pollutant benzo[a] pyrene impacts the volatile metabolome and transcriptome of the human gut microbiota[J]. Frontiers in Microbiology, 2017, 8:1562
|
Zhang L, Nichols R G, Correll J, et al. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation[J]. Environmental Health Perspectives, 2015, 123(7):679-688
|
Chi Y, Lin Y, Zhu H, et al. PCBs-high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice[J]. Environmental Pollution, 2018, 239:332-341
|
Chen L, Zhang W, Hua J, et al. Dysregulation of intestinal health by environmental pollutants:Involvement of the estrogen receptor and aryl hydrocarbon receptor[J]. Environmental Science & Technology, 2018, 52(4):2323-2330
|
Nicholson J K, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086):1262-1267
|
Gao B, Bian X, Mahbub R, et al. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions[J]. Environmental Health Perspectives, 2016, 125(2):198-206
|
Lozano V L, Defarge N, Rocque L M, et al. Sex-dependent impact of Roundup on the rat gut microbiome[J]. Toxicology Reports, 2018, 5:96-107
|
Neuman H, Debelius J W, Knight R, et al. Microbial endocrinology:The interplay between the microbiota and the endocrine system[J]. FEMS Microbiology Reviews, 2015, 39(4):509-521
|
Lakritz J R, Poutahidis T, Mirabal S, et al. Gut bacteria require neutrophils to promote mammary tumorigenesis[J]. Oncotarget, 2015, 6(11):9387
|
Erdman S E, Poutahidis T. Gut bacteria and cancer[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2015, 1856(1):86-90
|
Motta E V S, Raymann K, Moran N A. Glyphosate perturbs the gut microbiota of honey bees[J]. Proceedings of the National Academy of Sciences, 2018, 115(41):10305-10310
|
Condette C J, Khorsi-Cauet H, Morlière P, et al. Increased gut permeability and bacterial translocation after chronic chlorpyrifos exposure in rats[J]. PLoS One, 2014, 9(7):e102217
|
Liu Q, Shao W, Zhang C, et al. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice[J]. Environmental Pollution, 2017, 226:268-276
|
Lukowicz C, Ellero-Simatos S, Régnier M, et al. Metabolic effects of a chronic dietary exposure to a low-dose pesticide cocktail in mice:Sexual dimorphism and role of the constitutive androstane receptor[J]. Environmental Health Perspectives, 2018, 126(6):067007
|
Brandt K K, Amézquita A, Backhaus T, et al. Ecotoxicological assessment of antibiotics:A call for improved consideration of microorganisms[J]. Environment International, 2015, 85:189-205
|
Wiström J, Norrby S R, Myhre E B, et al. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients:A prospective study[J]. Journal of Antimicrobial Chemotherapy, 2001, 47(1):43-50
|
Roca-Saavedra P, Rodriguez J A, Lamas A, et al. Low-dosage antibiotic intake can disturb gut microbiota in mice[J]. CyTA-Journal of Food, 2018, 16(1):672-678
|
Yin J, Zhang X X, Wu B, et al. Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut[J]. Ecotoxicology, 2015, 24(10):2125-2132
|
Panda S, Casellas F, Vivancos J L, et al. Short-term effect of antibiotics on human gut microbiota[J]. PloS One, 2014, 9(4):e95476
|
Schokker D, Zhang J, Vastenhouw S A, et al. Long-lasting effects of early-life antibiotic treatment and routine animal handling on gut microbiota composition and immune system in pigs[J]. PLoS One, 2015, 10(2):e0116523
|
Behr C, Ramírez-Hincapié S, Cameron H, et al. Impact of lincosamides antibiotics on the composition of the rat gut microbiota and the metabolite profile of plasma and feces[J]. Toxicology Letters, 2018, 296:139-151
|
Miller S, Wu R, Oremus M. The association between antibiotic use in infancy and childhood overweight or obesity:A systematic review and meta-analysis[J]. Obesity Reviews, 2018, 19(11):1463-1475
|
Loewen K, Monchka B, Mahmud S M, et al. Prenatal antibiotic exposure and childhood asthma:A population-based study[J]. European Respiratory Journal, 2018, 52(1):1702070
|
Gao K, Pi Y, Mu C L, et al. Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets[J]. Journal of Neurochemistry, 2018, 146(3):219-234
|
Neuman H, Forsythe P, Uzan A, et al. Antibiotics in early life:Dysbiosis and the damage done[J]. FEMS Microbiology Reviews, 2018, 42(4):489-499
|
Mitre E, Susi A, Kropp L E, et al. Association between use of acid-suppressive medications and antibiotics during infancy and allergic diseases in early childhood[J]. JAMA Pediatrics, 2018, 172(6):e180315
|
Hu Y, Yang X, Qin J, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota[J]. Nature Communications, 2013, 4:2151
|
Feng J, Li B, Jiang X, et al. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses[J]. Environmental Microbiology, 2018, 20(1):355-368
|
Zhu D, An X L, Chen Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil Collembolan[J]. Environmental Science & Technology, 2018, 52(5):3081-3090
|
Xiong W, Wang Y, Sun Y, et al. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes[J]. Microbiome, 2018, 6(1):34
|
Jakobsson H E, Jernberg C, Andersson A F, et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome[J]. PloS One, 2010, 5(3):e9836
|
Law K L, Thompson R C. Microplastics in the seas[J]. Science, 2014, 345(6193):144-145
|
Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454
|
Pedã C, Caccamo L, Fossi M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics:Preliminary results[J]. Environmental Pollution, 2016, 212:251-256
|
Cao D, Wang X, Luo X, et al. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil[C]. Bangkok, Thailand:IOP Conference Series:Earth and Environmental Science, 2017
|
Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments:Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586:127-141
|
Zhu B K, Fang Y M, Zhu D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil Oligochaete Enchytraeus crypticus[J]. Environmental Pollution, 2018, 239:408-415
|
Mendoza L M R, Jones P R. Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre[J]. Environmental Chemistry, 2015, 12(5):611-617
|
Rochman C M, Hentschel B T, Teh S J. Long-term sorption of metals is similar among plastic types:Implications for plastic debris in aquatic environments[J]. PloS One, 2014, 9(1):e85433
|
Lu L, Wan Z, Luo T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of the Total Environment, 2018, 631:449-458
|
Jin Y, Lu L, Tu W, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. Science of the Total Environment, 2019, 649:308-317
|
王泓鸥, 董四君. 肠道微生物受环境污染的影响及其对宿主疾病的调控作用[J]. 生态毒理学报, 2017, 12(3):110-119
Wang H O, Dong S J. Influences of the environment pollution on the intestinal microbiota and its regulations on host diseases[J]. Asian Journal of Ecotoxicology, 2017, 12(3):110-119(in Chinese)
|
Spanogiannopoulos P, Turnbaugh P J. Broad collateral damage of drugs against the gut microbiome[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(8):457-458
|
Kéfi S, Domínguez-García V, Donohue I, et al. Advancing our understanding of ecological stability[J]. Ecology Letters, 2019, 22(9):1349-1356
|
金泰廙. 毒理学原理和方法[M]. 上海:复旦大学出版社, 2012:130-139
|
Sommer F, Anderson J M, Bharti R, et al. The resilience of the intestinal microbiota influences health and disease[J]. Nature Reviews Microbiology, 2017, 15(10):630
|
MacPherson C W, Mathieu O, Tremblay J, et al. Gut bacterial microbiota and its resistome rapidly recover to basal state levels after short-term amoxicillin-clavulanic acid treatment in healthy adults[J]. Scientific Reports, 2018, 8(1):11192
|
Kim S W, Chae Y, Kwak J I, et al. Viability of gut microbes as a complementary earthworm biomarker of metal exposure[J]. Ecological Indicators, 2016, 60:377-384
|