[1] 张亚雷, 褚华强, 周雪飞, 等. 废水微藻资源化处理原理与技术[M]. 北京:科学出版社, 2015:1-248
[2] 刘林林, 黄旭雄, 危立坤, 等. 15株微藻对猪场养殖污水中氮磷的净化及其细胞营养分析[J]. 环境科学学报, 2014, 34(8): 1986-1994
[3] 栗越妍, 孟睿, 何连生, 等. 净化水产养殖废水的藻种筛选[J]. 环境科学与技术, 2010, 33(6): 67-70
[4] RUIZ-MARIN A, MENDOZA-ESPINOSA L G, STEPHENSON T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater[J]. Bioresource Technology, 2010, 101(1): 58-64
[5] SINGH Nirbhay Kumar, DHAR Dolly Wattal. Microalgal remediation of sewage effluent[J]. Proceedings of the Indian National Science Academy, 2010, 76(4): 209-221
[6] SYDNEY E B, DA SILVA T E, TOKARSKI A, et al. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage[J]. Applied Energy, 2011, 88(10): 3291-3294
[7] CHINNASAMY S, BHATNAGAR A, HUNT R W, et al. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications[J]. Bioresource Technology, 2010, 101(9): 3097-3105
[8] 刘玉环, 史晓洁, 巫小丹, 等. 螺旋藻和菌-藻共生系统处理啤酒废水[J]. 环境工程学报, 2014, 8(1): 82-86
[9] 黄昆, 黄峙, 郑文杰. 钝顶螺旋藻(Spirulina platensis)对生活污水的生物净化与修复[J]. 环境污染与防治, 2010, 32(2): 63-66
[10] 马红芳, 李鑫, 胡洪营, 等. 栅藻LX1在水产养殖废水中的生长、脱氮除磷和油脂积累特性[J]. 环境科学, 2012, 33(6): 1891-1896
[11] 高保燕, 沈丹丹, 何思思, 等. 富油微藻——尖状栅藻生物质生产与奶牛场废水处理相结合的效果研究[J]. 可再生能源, 2014, 32(5): 673-679
[12] 胡洪营, 李鑫, 杨佳. 基于微藻细胞培养的水质深度净化与高价值生物质生产耦合技术[J]. 生态环境学报, 2009, 18(3): 1122-1127
[13] MANARA P, ZABANIOTOU A. Towards sewage sludge based biofuels via thermochemical conversion - A review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2566-2582
[14] 吕素娟, 张维, 彭小伟, 等. 城市生活废水用于产油微藻培养[J]. 生物工程学报, 2011, 27(3): 445-452
[15] 曹海, 张馨允, 孔维宝, 等. 利用啤酒废水培养普通小球藻生产微藻生物质和油脂[J]. 中国油脂, 2012, 37(9): 65-69
[16] 李岩, 周文广, 张晓东, 等. 微藻培养技术处理猪粪厌氧发酵废水效果[J]. 农业工程学报, 2011, 27(S1): 101-104
[17] 黄学平, 李薇, 万金保, 等. 基于SPSS因子分析的养猪废水中藻生长适应性综合评价[J]. 江西师范大学学报(自然科学版), 2015, 39(1): 94-100
[18] 包苑榆, 钟萍, 韦桂峰, 等. 基于15N稳定同位素技术的斜生栅藻对硝氮和氨氮吸收研究[J]. 水生态学杂志, 2011, 32(3): 16-20
[19] ASLAN S, KAPDAN I K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae[J]. Ecological Engineering, 2006, 28(1): 64-70
[20] RUIZ J, ALVAREZ P, ARBIB Z, et al. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris[J]. International Journal of Phytoremediation, 2011, 13(9): 884-896
[21] 陈春云, 庄源益, 方圣琼. 小球藻对养殖废水中N、P的去除研究[J]. 海洋环境科学, 2009, 28(1): 9-11
[22] SUEN Y, HUBBARD J S, HOLZER G, et al. Total lipid production of the green alga nannochloropsis sp. qii under different nitrogen regimes[J].Journal of Phycology, 1987, 23(2): 289-296
[23] DORTCH Q. Effect of growth conditions on accumulation of internal nitrate, ammonium, amino acids, and protein in three marine diatoms[J]. Journalof Experimental Marine Biology and Ecology, 1982, 61(3): 243-264
[24] 辜博, 费小雯, 胡新文, 等. 营养元素限制对微芒藻Y-002油脂积累的影响[J]. 热带作物学报, 2011, 32(5): 789-795
[25] DE LA JARA A, MENDOZA H, MARTEL A, et al. Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii[J].Journal of Applied Phycology, 2003,15(5): 433-438
[26] 孙珊, 郑立, 韩笑天, 等. 微藻油脂含量和组分及其影响因子的研究[J]. 海洋科学, 2009, 33(12): 122-128
[27] REITAN K I, RAINUZZO J R, OLSEN Y. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae1[J]. Journal of Phycology, 1994, 30(6): 972-979
[28] CHISTI Y. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3): 294-306
[29] CONVERTI A, CASAZZA A A, ORTIZ E Y, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(6): 1146-1151
[30] 石娟, 潘克厚. 不同光照条件对小新月菱形藻和等鞭金藻8701生长及生化成分的影响[J]. 中国水产科学, 2004, 11(2): 121-128
[31] EMDADI D, BERLAND B. Variation in lipid class composition during batch growth of Nannochloropsis salina and Pavlova lutheri[J]. Marine Chemistry, 1989, 26(3): 215-225
[32] 李涛, 李爱芬, 桑敏, 等. 富油能源微藻的筛选及产油性能评价[J]. 中国生物工程杂志, 2011, 31(4): 98-105