[1] WANG Shaomang, GUAN Yuan, WANG Liping, et al. Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption-photocatalysis for efficient treatment of dye wastewater[J]. Applied Catalysis B:Environmental, 2015, 168-169:448-457
[2] IOANNOU L A, LI PUMA G, FATTA-KASSINOS D. Treatment of winery wastewater by physicochemical, biological and advanced processes:A review[J]. Journal of Hazardous Materials, 2015, 286:343-368
[3] FU Jianwei, CHEN Zhonghui, WANG Minghuan, et al. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres):Kinetics, isotherm, thermodynamics and mechanism analysis[J]. Chemical Engineering Journal, 2015, 259:53-61
[4] 王翠, 汪茜, 王春杏, 等. SDS/凹凸棒土对水中碱性嫩黄的吸附及性能[J]. 环境科学与技术, 2014, 37(6):49-54
[5] 杨文杰, 麦锦欢, 王晓. 凹凸棒土对常规净水工艺下水中有机物的吸附研究[J]. 广东化工, 2015, 42(11):92-93, 109
[6] 施冬雷, 乔仁静, 许琦. 酸改性凹凸棒土的制备及其脱汞性能[J]. 合成化学, 2015, 23(8):720-724
[7] 许晨红, 张静, 马喜君. 水热处理凹土对硝基苯废水的吸附研究[J]. 中国矿业, 2015, 24(2):131-134
[8] 石莹莹, 张强华, 王海龙, 等. 凹土负载催化剂对模拟烟气中单质汞的吸附[J]. 环境工程学报, 2015, 9(2):835-840
[9] 杨佳静, 管振杰, 王冠, 等. 负载纳米TiO2凹凸棒黏土的制备表征及对Mn2+的吸附性能[J]. 环境工程学报, 2014, 8(7):2885-2888
[10] LIU Huihui, CAI Xiyun, WANG Yu, et al. Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water[J]. Water Research, 2011, 45(11):3499-3511
[11] CHEN Lan, BAI Bo. Equilibrium, kinetic, thermodynamic, and in situ regeneration studies about methylene blue adsorption by the raspberry-like TiO2@yeast microspheres[J]. Industrial & Engineering Chemistry Research, 2013, 52(44):15568-15577
[12] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9):1361-1403
[13] FREUNDLICH H M F. Uber die adsorption in Losungen[J]. Zeitschrift For Physikalische Chemie, 1906, 57:385-470
[14] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure & Applied Chemistry, 1985, 57(4):603-619
[15] GREGG S J, SING K S W. Adsorption, Surface Area, and Porosity[M]. London, UK:Academic Press, 1982
[16] PANG Hongchang, NING Guiling, GONG Weitao, et al. Direct synthesis of hexagonal Mg(OH)2 nanoplates from natural brucite without dissolution procedure[J]. Chemical Communications, 2011, 47(22):6317-6319
[17] GONG Weitao, WU Di, CHENG Zhen, et al. Direct synthesis of porous Mg(OH)2 nanoplates from natural brucite[J]. Materials Research Bulletin, 2013, 48(3):1333-1337
[18] SUÁREZ M, GARCíA-ROMERO E. FTIR spectroscopic study of palygorskite:Influence of the composition of the octahedral sheet[J]. Application Clay Science, 2006, 31(1/2):154-163
[19] GOTTLIEB A, SHAW C, SMITH A, et al. The toxicity of textile reactive azo dyes after hydrolysis and decolourisation[J]. Journal of Biotechnology, 2003, 101(1):49-56
[20] LIU Qinfu, YAO Xiang, CHENG Hongfei, et al. An infrared spectroscopic comparison of four Chinese palygorskites[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2012, 96:784-789
[21] YAN Wenchang, LIU Dong, TAN Daoyong, et al. FTIR spectroscopy study of the structure changes of palygorskite under heating[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2012, 97:1052-1057
[22] MADEJOVÁ J, KOMADEL P. Baseline studies of the Clay Minerals Society source clays:Infrared methods[J]. Clays and Clay Minerals, 2001, 49(5):410-432
[23] ZHANG Yuan, WANG Wenbo, ZHANG Junping, et al. A comparative study about adsorption of natural palygorskite for methylene blue[J]. Chemical Engineering Journal, 2015, 262:390-398