Tan W, Peralta-Videa J R, Gardea-Torresdey J L. Interaction of titanium dioxide nanoparticles with soil components and plants:Current knowledge and future research needs-A critical review[J]. Environmental Science:Nano, 2018, 5(2):257-278
吕继涛, 张淑贞. 人工纳米材料与植物的相互作用:植物毒性、吸收和传输[J]. 化学进展, 2013, 25(1):156-163 Lv J T, Zhang S Z. Interactions between manufactured nanomaterials and plants:Phytotoxicity, uptake and translocation[J]. Progress in Chemistry, 2013, 25(1):156-163(in Chinese)
何湘伟, 隋阳, 张雪莹, 等. 纳米材料毒性机制及其影响因素[J]. 西南民族大学学报:自然科学版, 2015, 41(3):316-325 He X W, Sui Y, Zhang X Y, et al. Toxicity mechanism of nanomaterials and influencing factors[J]. Journal of Southwest University of Nationalities:Natural Science Edition, 2015, 41(3):316-325(in Chinese)
Mitrano D M, Motellier S, Clavaguera S, et al. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products[J]. Environment International, 2015, 77:132-147
Goswami L, Kim K H, Deep A, et al. Engineered nano particles:Nature, behavior, and effect on the environment[J]. Journal of Environmental Management, 2017, 196:297-315
Dehkourdi E H, Mosavi M. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro[J]. Biological Trace Element Research, 2013, 155(2):283-286
Asli S, Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J]. Plant, Cell & Environment, 2009, 32:577-584
王震宇, 于晓莉, 高冬梅, 等. 人工合成纳米TiO2和MWCNTs对玉米生长及其抗氧化系统的影响[J]. 环境科学, 2010, 31(2):480-487 Wang Z Y, Yu X L, Gao D M, et al. Effect of nano-rutile TiO2 and multi-walled carbon nanotubes on the growth of maize (Zea mays L.) seedlings and the relevant antioxidant response[J]. Environmental Science, 2010, 31(2):480-487(in Chinese)
侯东颖, 冯佳, 谢树莲, 等. 纳米二氧化钛胁迫对普生轮藻的毒性效应[J]. 环境科学学报, 2012, 32(6):1481-1486 Hou D Y, Feng J, Xie S L, et al. Toxic effects of nanoparticle TiO2 stress on Chara vulgaris L.[J]. Acta Scientiae Circumstantiae, 2012, 32(6):1481-1486(in Chinese)
Du W, Sun Y, Ji R, et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil[J]. Journal of Environmental Monitoring, 2011, 13(4):822-828
Ze Y, Liu C, Wang L, et al. The regulation of TiO2 nanoparticles on the expression of light-harvesting complex Ⅱ and photosynthesis of chloroplasts of Arabidopsis thaliana[J]. Biological Trace Element Research, 2011, 143(2):1131-1141
Yang F, Liu C, Gao F, et al. The improvement of spinach growth by nano-anatase TiO2treatment is related to nitrogen photoreduction[J]. Biological Trace Element Research, 2007, 119(1):77-88
Zahra Z, Arshad M, Rafique R, et al. Metallic nanoparticles (TiO2and Fe3O4) application modify rhizosphere phosphorus availability and uptake by Lactuca sativa[J]. Journal of Agricultural and Food Chemistry, 2015, 63(31):6876-6882
Li J, Naeem M S, Wang X, et al. Nano-TiO2 is not phytotoxic as revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response[J]. PLoS One, 2015, 10(12):e0143885
Ayyaraju M, Jie H, Xuan G, et al. Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2018, 161:497-506
Dias M C, Santos C, Pinto G, et al. Titanium dioxide nanoparticles impaired both photochemical and non-photochemical phases of photosynthesis in wheat[J]. Protoplasma, 2019, 256(1):69-78
Terry N. Limiting factors in photosynthesis:Ⅰ. Use of iron stress to control photochemical capacity in vivo[J]. Plant Physiology, 1980, 65(1):114-120
Hajra A, Mondal N K. Effects of ZnO and TiO2 nanoparticles on germination, biochemical and morphoanatomical attributes of Cicer arietinum L.[J]. Energy Ecology & Environment, 2017, 2(4):1-12
鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 1999:309-310
吕继涛, 罗磊, 张淑贞, 等. 玉米对纳米TiO2的吸收和积累[J]. 环境化学, 2011, 30(5):903-907 Lv J T, Luo L, Zhang S Z, et al. The uptake and accumulation of TiO2 nanoparticles by maize plants[J]. Environmental Chemistry, 2011, 30(5):903-907(in Chinese)
Song U, Jun H, Waldman B, et al. Functional analyses of nanoparticle toxicity:A comparative study of the effects of TiO2 and Ag on tomatoes Lycopersicon esculentum[J]. Ecotoxicology and Environmental Safety, 2013, 93:60-67
许大全. 光合作用气孔限制分析中的一些问题[J]. 植物生理学通讯, 1997, 33(4):241-244 Xu D Q. Some problems in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communications, 1997, 33(4):241-244(in Chinese)
Carvajal M, Alcaraz C F. Why titanium is a beneficial element for plants[J]. Journal of Plant Nutrition, 1998, 21(4):655-664
高嫄. 纳米TiO2、纳米CuO对青萍生长影响及其机理探讨[D]. 淄博:山东理工大学, 2012:19-20 Gao Y. Effect and mechanism of TiO2 and CuO nano-particles on Lemna minor growth[D]. Zibo:Shandong University of Technology, 2012 :19-20(in Chinese)
Wu Y, Gong W, Wang Y, et al. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean[J]. Journal of Plant Research, 2018, 131(4):671-680
Lyu S, Wei X, Chen J, et al. Titanium as a beneficial element for crop production[J]. Frontiers in Plant Science, 2017, 8:597-616
Ahmad B, Shabbir A, Jaleel H, et al. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L.[J]. Current Plant Biology, 2018, 13:6-15
Kurepa J, Paunesku T, Vogt S, et al. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana[J]. Nano Letters, 2010, 10(7):2296-2302
李艳娟, 庄正, 刘青青, 等. 纳米TiO2对杉木种子萌发和幼苗生长及生理的影响[J]. 生态学杂志, 2017, 36(5):1259-1264 Li Y J, Zhuang Z, Liu Q Q, et al. The effects of nano-TiO2 on seed germination, seedling growth and physiology of Chinese fir[J]. Chinese Journal of Ecology, 2017, 36(5):1259-1264(in Chinese)
林道辉, 冀静, 田小利, 等. 纳米材料的环境行为与生物毒性[J]. 科学通报, 2009, 54(23):3590-3604 Lin D H, Ji J, Tian X L, et al. Environmental behavior and toxicity of engineered nanomaterials[J]. Chinese Science Bulletin, 2009, 54(23):3590-3604(in Chinese)
Movafeghi A, Khataee A, Abedi M, et al. Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza:Evaluation of growth parameters, pigment contents and antioxidant enzyme activities[J]. Journal of Environmental Sciences, 2018, 64(2):130-138
Hussain S, Iqbal N, Brestic M, et al. Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment[J]. Science of the Total Environment, 2019, 658:626-637
巴翠兰. 纳米二氧化钛在植物体内吸收、转运和蓄积及与蛋白作用机理的研究[D]. 保定:河北大学, 2012:14-18 Ba C L. Absorption, transport and accumulation of titanium dioxide in plants and function methods between protein and metal[D]. Baoding:Hebei University, 2012:14 -18(in Chinese)