PINTO D, SANTOS M A, CHAMBEL L. Thirty years of viable but nonculturable state research:Unsolved molecular mechanisms[J]. Critical Reviews in Microbiology, 2015, 41(1):61-76.
AMANO F. Differential resuscitative effects of pyruvate and its analogs on VBNC (Viable But Nonculturable) Salmonella[M]. John Wiley & Sons, Inc., 2016.
XU H S, ROBERTS N, SINGLETON F L, et al. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment[J]. Microbial Ecology, 1982, 8(4):313-323.
VILA J, TAULER M, GRIFOLL M. Bacterial PAH degradation in marine and terrestrial habitats[J]. Current Opinion in Biotechnology, 2015, 33:95-102.
LOVISO C L, LOZADA M, GUIBERT L M, et al. Metagenomics reveals the high polycyclic aromatic hydrocarbon-degradation potential of abundant uncultured bacteria from chronically polluted subantarctic and temperate coastal marine environments[J]. Journal of Applied Microbiology, 2015, 119(2):411-424.
LENNON J T, JONES S E. Microbial seed banks:The ecological and evolutionary implications of dormancy[J]. Nature Reviews Microbiology, 2011, 9(2):119-130.
AYRAPETYAN M, WILLIAMS T C, OLIVER J D. Relationship between the Viable but nonculturable state and antibiotic persister cells[J]. Journal of Bacteriology, 2018, 200(20):e00249-18.
MAISONNEUVE E, GERDES K. Molecular mechanisms underlying bacterial persisters[J]. Cell, 2014, 157(3):539-548.
OLIVER J D. The viable but nonculturable state in bacteria[J]. Journal of Microbiology, 2005, 43(1):93-100.
ZHANG X, LIAN G, ZHANG S, et al. Boron nitride nanocarpets:Controllable synthesis and their adsorption performance to organic pollutants[J]. CrystEngComm, 2012, 14(14):4670-4676.
SU X, SUN F, WANG Y, et al. Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans[J]. Scientific Reports, 2015, 5(1):18590-18590.
SIGNORETTO C, LLEO M M, TAFI M C, et al. Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state[J]. Applied and Environmental Microbiology, 2000, 66(5):1953-1959.
OLIVER J D. Recent findings on the viable but nonculturable state in pathogenic bacteria[J]. Fems Microbiology Reviews, 2010, 34(4):415-425.
NOWAKOWSKA J, OLIVER J D. Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state[J]. FEMS Microbiology Ecology, 2013, 84(1):213-222.
KIM J, CHOWDHURY N, YAMASAKI R, et al. Viable but non-culturable and persistence describe the same bacterial stress state[J]. Environmental Microbiology, 2018, 20(6):2038-2048.
VAN TATENHOVEPEL R J, ZWERING E, SOLOPOVA A, et al. Ampicillin-treated Lactococcus lactis MG1363 populations contain persisters as well as viable but non-culturable cells[J]. Scientific Reports, 2019, 9(1):9867.
LEE S, BAE S. Molecular viability testing of viable but non-culturable bacteria induced by antibiotic exposure[J]. Microbial Biotechnology, 2018, 11(6):1008-1016.
BERNIER S P, LEBEAUX D, DEFRANCESCO A S, et al. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin[J]. PLOS Genetics, 2013, 9(1):e1003144.
MAISONNEUVE E, CASTROCAMARGO M, GERDES K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin Activity[J]. Cell, 2013, 154(5):1140-1150.
AMATO S M, ORMAN M A, BRYNILDSEN M P. Metabolic control of persister formation in Escherichia coli [J]. Molecular Cell, 2013, 50(4):475-487.
AYRAPETYAN M, WILLIAMS T C, OLIVER J D. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria[J]. Trends in Microbiology, 2015, 23(1):7-13.
SU X, ZHANG Q, HU J, et al. Enhanced degradation of biphenyl from PCB-contaminated sediments:The impact of extracellular organic matter from Micrococcus luteus[J]. Applied Microbiology and Biotechnology, 2015, 99(4):1989-2000.
LI Z, ZHANG Y, WANG Y, et al. A new approach of Rpf addition to explore bacterial consortium for enhanced phenol degradation under high salinity conditions[J]. Current Microbiology, 2018, 75(8):1046-1054.
SU X, SHEN H, YAO X, et al. A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites[J]. Bioresource Technology, 2013, 146:27-34.
SHARMA A, SINGH S B, SHARMA R, et al. Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition[J]. Journal of Environmental Management, 2016, 181:728-736.
SU X, CHEN X, HU J, et al. Exploring the potential environmental functions of viable but non-culturable bacteria[J]. World Journal of Microbiology & Biotechnology, 2013, 29(12):2213-2218.
苏晓梅, 张慧芳, 丁林贤, 等. 产絮凝剂复合菌群的培养基及培养条件优化[J]. 华中师范大学学报(自然科学版), 2011, 45(3):450-455. SU X M, ZHANG H F, DING L X, et al. Optimized culture medium and culture conditions for multiple bioflocculant-producing microorganisms[J]. Journal of Huazhong Normal University(Natural Sciences), 2011, 45(3):450-455(in Chianese).
YU X, ZHANG L, REN B, et al. Arthrobacter liuii sp. nov., resuscitated from Xinjiang desert soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(3):896-901.
SU X, LIU Y, HASHMI M Z, et al. Rhodococcus biphenylivorans sp. nov., a polychlorinated biphenyl-degrading bacterium[J]. Antonie van Leeuwenhoek, 2015, 107(1):55-63.
YE Z, LI H, JIA Y, et al. Supplementing resuscitation-promoting factor (Rpf) enhanced biodegradation of polychlorinated biphenyls (PCBs) by Rhodococcus biphenylivorans strain TG9T[J]. Environmental Pollution, 2020, 263(Pt A):114488.
李想, 张雪英, 周俊, 等. 1株铜绿假单胞菌对芘的降解特性及代谢途径[J]. 环境科学, 2018, 39(4):1794-1803. LI X, ZHANG X Y, ZHOU J, et al. Degradation characteristics and metabolic pathway of a pyrene-degrading Pseudomonas aeruginosa Strain[J]. Environmental Science, 2018, 39(4):1794-1803(in Chinese).
SU X, LIU Y, HASHMI M Z, et al. Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus[J]. Microbial Biotechnology, 2015, 8(3):569-578.
HEIDELBERG J, SHAHAMAT M, LEVIN M, et al. Effect of aerosolization on culturability and viability of gram-negative bacteria[J]. Applied and Environmental Microbiology,1997, 63(9):3585-3588.
ALVA V A, PEYTON B M. Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis:Influence of pH and salinity[J]. Environmental Science & Technology, 2003, 37(19):4397-4402.
JAN-ROBLERO J, MAGOS X, FERNáNDEZ L, et al. Phylogenetic analysis of bacterial populations in waters of the former Texcoco Lake, Mexico[J]. Canadian Journal of Microbiology, 2004, 50(12):1049-1059.
AL-THUKAIR A A, MALIK K. Pyrene metabolism by the novel bacterial strains Burkholderia fungorum (T3A13001) and Caulobacter sp (T2A12002) isolated from an oil-polluted site in the Arabian Gulf[J]. International Biodeterioration & Biodegradation, 2016, 110:32-37.
INGLIS T J J, SAGRIPANTI J. Environmental factors that affect the survival and persistence of Burkholderia pseudomallei[J]. Applied and Environmental Microbiology, 2006, 72(11):6865-6875.
HORMISCH D, BROST I, KOHRING G W, et al. Mycobacterium fluoranthenivorans sp. nov., a fluoranthene and aflatoxin B1 degrading bacterium from contaminated soil of a former coal gas plant[J]. Systematic & Applied Microbiology, 2004, 27(6):653-660.
DOWNING K J, MISCHENKO V V, SHLEEVA M O, et al. Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro[J]. Infection & Immunity, 2005, 73(5):3038-3043.
FIDA T T, MORENOFORERO S K, BREUGELMANS P, et al. Physiological and transcriptome response of the polycyclic aromatic hydrocarbon degrading Novosphingobium sp. LH128 after inoculation in soil[J]. Environmental Science & Technology, 2017, 51(3):1579.
BANERJEE A, GHOSHAL A K. Phenol degradation performance by isolated Bacillus cereus immobilized in alginate[J]. International Biodeterioration & Biodegradation, 2011, 65(7):1052-1060.
CHEN H, SHEN J, PAN G, et al. Correlations between cyanobacterial density and bacterial transformation to the viable but nonculturable (VBNC) state in four freshwater water bodies[J]. Ecotoxicology, 2015, 24(7-8):1459-1466.
KHAN Z, ROMAN D, KINTZ T, et al. Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1[J]. Environ Sci Technol, 2014, 48(20):12221-12228.
LEMKE M J, LEFF L G. Culturability of stream bacteria assessed at the assemblage and population levels[J]. Microbial Ecology, 2006, 51(3):365-374.
YUTTHAMMO C, THONGTHAMMACHAT N, PINPHANICHAKARN P, et al. Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants[J]. Microb Ecol,2010, 59(2):357-368.
WAN C, ZHANG Q, LEE D, et al. Long-term storage of aerobic granules in liquid media:Viable but non-culturable status[J]. Bioresource Technology, 2014, 166:464-470.
ALLERON L, KHEMIRI A, KOUBAR M, et al. VBNC Legionella pneumophila cells are still able to produce virulence proteins[J]. Water Research, 2013, 47(17):6606-6617.
XU T, YU M, LIU J, et al. Role of RpoN from Labrenzia aggregata LZB033(Rhodobacteraceae) in formation of flagella and biofilms, motility, and environmental adaptation[J]. Applied and Environmental Microbiology, 2019, 85(7):e02844-18.
BASU A, YAP M F. Disassembly of the Staphylococcus aureus hibernating 100S ribosome by an evolutionarily conserved GTPase[J]. Proceedings of the National Academy of Sciences, 2017, 114(39):E8165-E8173.
KLINE B C, MCKAY S L, TANG W W, et al. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal Fitness, and pathogenesis[J]. Journal of Bacteriology, 2015, 197(3):581-591.
HARSHMAN R B, YAMAZAKI H. Formation of ppGpp in a relaxed and stringent strain of Escherichia coli during diauxie lag[J]. Biochemistry, 1971, 10(21):3980-3982.
AFIF H, ALLALI N, COUTURIER M, et al. The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system[J]. Molecular Microbiology, 2001, 41(1):73-82.
OVERGAARD M, BORCH J, JORGENSEN M G, et al. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity[J]. Molecular Microbiology, 2008, 69(4):841-857.
WINTHER K S, GERDES K. Regulation of Enteric vapBC transcription:induction by VapC toxin dimer-breaking[J]. Nucleic Acids Research, 2012, 40(10):4347-4357.
SONG S, WOOD T K. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation[J]. Biochemical and Biophysical Research Communications, 2020, 523(2):281-286.
KATO T, YOSHIDA H, MIYATA T, et al. Structure of the 100S ribosome in the hibernation stage revealed by blectron cryomicroscopy[J]. Structure, 2010, 18(6):719-724.
ORTIZ J O, BRANDT F, MATIAS V R F, et al. Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ[J]. Journal of Cell Biology, 2010, 190(4):613-621.
MATZOV D, AIBARA S, BASU A, et al. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus[J]. Nature Communications, 2017, 8(1):723-723.
CHATURONGAKUL S, RAENGPRADUB S, PALMER M E, et al. Transcriptomic and phenotypic analyses identify coregulated, overlapping regulons among PrfA, CtsR, HrcA, and the alternative Sigma factors σB, σC, σH, and σL in Listeria monocytogenes[J]. Applied and Environmental Microbiology, 2011, 77(1):187-200.
AKANUMA G, KAZO Y, TAGAMI K, et al. Ribosome dimerization is essential for the efficient regrowth of Bacillus subtilis[J]. Microbiology, 2016, 162(3):448-458.
MCKAY S L, PORTNOY D A. Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(11):6992-6999.
YU J, LIU Y, YIN H, et al. Regrowth-delay body as a bacterial subcellular structure marking multidrug-tolerant persisters[J]. Cell discovery, 2019, 5(1):1-15.
高学宇. Rpf对印染废水中VBNC菌复苏活化的研究[J]. 环境科学导刊, 2016, 35(S1):110-117. GAO X Y. Research on activating VBNC bacteria in the printing and dyeing wastewater by Rpf[J]. Environmental Science Survey, 2016, 35(S1):110-117(in Chinese).
AYRAPETYAN M, WILLIAMS T C, OLIVER J D. Interspecific quorum sensing mediates the resuscitation of viable but nonculturable vibrios[J]. Applied and Environmental Microbiology, 2014, 80(8):2478-2483.
ROBBEN C, FISTER S, WITTE A K, et al. Induction of the viable but non-culturable state in bacterial pathogens by household cleaners and inorganic salts[J]. Scientific Reports, 2018, 8(1):15132.
ZHAO X, ZHONG J, WEI C, et al. Current perspectives on viable but non-culturable state in foodborne pathogens[J]. Frontiers in Microbiology, 2017, 8:580-580.
SU X M, BAMBA A M, ZHANG S, et al. Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation[J]. Letters in Applied Microbiology, 2018, 66(4):277-283.
MURUGAN K, VASUDEVAN N. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation[J]. Ecotoxicology and Environmental Safety, 2018, 157:40-60.
DING L, YOKOTA A. Curvibacter fontana sp. nov., a microaerobic bacteria isolated from well water[J]. Journal of General and Applied Microbiology, 2010, 56(3):267-271.
SU X, ZHANG S, MEI R, et al. Resuscitation of viable but non-culturable bacteria to enhance the cellulose-degrading capability of bacterial community in composting[J]. Microbial Biotechnology, 2018, 11(3):527-536.
NIKITUSHKIN V D, DEMINA G R, SHLEEVA M O, et al. A product of RpfB and RipA joint enzymatic action promotes the resuscitation of dormant mycobacteria[J]. FEBS Journal, 2015, 282(13):2500-2511.
RUGGIERO A, SQUEGLIA F, ROMANO M, et al. Structure and dynamics of the multi-domain resuscitation promoting factor RpfB from Mycobacterium tuberculosis[J]. Journal of Biomolecular Structure & Dynamics, 2017, 35(6):1322-1330.
PANUTDAPORN N, KAWAMOTO K, ASAKURA H, et al. Resuscitation of the viable but non-culturable state of Salmonella enterica serovar Oranienburg by recombinant resuscitation-promoting factor derived from Salmonella Typhimurium strain LT2[J]. International Journal of Food Microbiology, 2006, 106(3):241-247.
RUGGIERO A, TIZZANO B, PEDONE E, et al. Crystal structure of the resuscitation-promoting factor (DeltaDUF)RpfB from M. tuberculosis [J]. Journal of Molecular Biology, 2009, 385(1):153-162.
PAPENFORT K, BASSLER B L. Quorum sensing signal-response systems in Gram-negative bacteria[J]. Nature Reviews Microbiology, 2016, 14(9):576-588.
ZENG L R, XIE J P. Molecular basis underlying LuxR family transcription factors and function diversity and implications for novel antibiotic drug targets[J]. Journal of Cellular Biochemistry, 2011, 112(11):3079-3084.
BATTESTI A, MAJDALANI N, GOTTESMAN S. The RpoS-mediated general stress response in Escherichia coli [J]. Annual Review of Microbiology, 2011, 65:189-213.
SCHUSTER M, HAWKINS A, HARWOOD C, et al. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing[J].Molecular Microbiology, 2004, 51(4):973-985.
VAN KESSEL J, RUTHERFORD S, SHAO Y, et al. Individual and combined roles of the master regulators AphA and LuxR in control of the Vibrio harveyi quorum-sensing regulon[J]. Journal of Bacteriology, 2013, 195(3):436-443.
JOELSSON A, KAN B, ZHU J. Quorum sensing enhances the stress response in Vibrio cholerae[J]. Applied and Environmental Microbiology, 2007, 73(11):3742-3746.
COUTARD F, LOZACH S, POMMEPUY M, et al. Real-time reverse transcription-PCR for transcriptional expression analysis of virulence and housekeeping genes in viable but nonculturable Vibrio parahaemolyticus after recovery of culturability[J]. Applied & Environmental Microbiology, 2007, 73(16):5183-5189.
KENDALL M M, SPERANDIO V. Cell-to-Cell Signaling in Escherichia coli and Salmonella[J]. EcoSal Plus, 2014, 6(1):doi:10.1128/ecosalplus.ESP-0002-2013.
汪保卫, 施庆珊, 欧阳友生, 等. 细菌抗氧化系统-oxyR调节子研究进展[J]. 微生物学报, 2008, 48(11):1556-1561. WANG B W, SHI Q S, OUYANG Y S, et al. Progress in oxyR regulon-the bacterial antioxidant defense system——A review[J]. Acta microbiologica Sinica, 2008, 48(11):1556-1561(in Chinese).
LIAO H, ZHONG X, XU L, et al. Quorum-sensing systems trigger catalase expression to reverse the oxyR deletion-mediated VBNC state in Salmonella typhimurium [J]. Research in Microbiology, 2019, 170(2):65-73.
黄妙琴, 郭峰, 柯才焕. 近岸海洋细菌的群体感应与生物膜形成关系[J]. 厦门大学学报(自然科学版), 2010, 49(6):863-870. HUANG M Q, GUO F, KE C H. Quorum sensing signal molecule and biofilm-forming capacity in coastal bacteria[J]. Journal of Xiamen University (Natural Science), 2010, 49(6):863-870(in Chinese).
MORISHIGE Y, FUJIMORI K, AMANO F. Differential resuscitative effect of pyruvate and its analogues on VBNC (viable but non-culturable) Salmonella[J]. Microbes and Environments, 2013, 28(2):180-186.
DESAGHER S, GLOWINSKI J, PREMONT J. Pyruvate protects neurons against hydrogen peroxide-induced toxicity[J]. Journal of Neuroscience, 1997, 17(23):9060-9067.
WOO Y J, TAYLOR M E, COHEN J E, et al. Ethyl pyruvate preserves cardiac function and attenuates oxidative injury after prolonged myocardial ischemia[J]. Journal of Thoracic and Cardiovascular Surgery, 2004, 127(5):1262-1269.
VARMA S D, HEGDE K R, HENEIN M G. Oxidative damage to mouse lens in culture. Protective effect of pyruvate[J]. Biochimica et Biophysica Acta, 2003, 1621(3):246-252.
MU D, LIANG Q, WANG X, et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing[J]. Microbiome, 2018, 6(1):1-15.
VILHENA C, KAGANOVITCH E, GRUNBERGER A, et al. Importance of pyruvate sensing and transport for the resuscitation of viable but nonculturable Escherichia coli K-12[J]. Journal of Aacteriology, 2018, 201(3):e00610-18.
CHEN S, LUO X, MAI B, et al. Distribution and mass inventories of polycyclic aromatic hydrocarbons and organochlorine pesticides in sediments of the Pearl River Estuary and the Northern South China Sea[J]. Environmental Science & Technology, 2006, 40(3):709-714.
CAPOZZI V, TORO M R D, GRIECO F, et al. Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine:New insights on molecular basis of VBNC behaviour using a transcriptomic approach[J]. Food Microbiology, 2016, 59:196-204.
ZHAO F, WANG Y, AN H, et al. New Insights into the Formation of Viable but Nonculturable Escherichia coli O157:H7 Induced by High-Pressure CO2[J]. Mbio, 2016, 7(4):e00961-16.