Villéger S, Brosse S, Mouchet M, et al. Functional ecology of fish:Current approaches and future challenges [J]. Aquatic Sciences, 2017, 79(4):783-801
|
Zou K S, Chen J W, Ruan H T, et al. eDNA metabarco-ding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling [J]. The Science of the Total Environment, 2020, 702:134704
|
Zhong W J, Zhang J Y, Wang Z H, et al. Holistic impact evaluation of human activities on the coastal fish biodiversity in the Chinese coastal environment [J]. Environmental Science & Technology, 2022, 56(10):6574-6583
|
Su G H, Logez M, Xu J, et al. Human impacts on global freshwater fish biodiversity [J]. Science, 2021, 371(6531):835-838
|
Barbarossa V, Schmitt R J P, Huijbregts M A J, et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(7):3648-3655
|
Reid A J, Carlson A K, Creed I F, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity [J]. Biological Reviews of the Cambridge Philosophical Society, 2019, 94(3):849-873
|
Zhang S, Zhao J D, Yao M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish [J]. Methods in Ecology and Evolution, 2020, 11:1609-1625
|
Bonar S A, Mercado-Silva N, Hubert W A, et al. Standard methods for sampling freshwater fishes:Opportunities for international collaboration [J]. Fisheries, 2017, 42(3):150-156
|
Coble A A, Flinders C A, Homyack J A, et al. eDNA as a tool for identifying freshwater species in sustainable forestry:A critical review and potential future applications [J]. The Science of the Total Environment, 2019, 649:1157-1170
|
Hänfling B, Lawson Handley L, Read D S, et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods [J]. Molecular Ecology, 2016, 25(13):3101-3119
|
Ruppert K M, Kline R J, Rahman M S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding:A systematic review in methods, monitoring, and applications of global eDNA [J]. Global Ecology and Conservation, 2019, 17:e00547
|
Goldberg C S, Turner C R, Deiner K, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species [J]. Methods in Ecology and Evolution, 2016, 7(11):1299-1307
|
Ficetola G F, Miaud C, Pompanon F, et al. Species detection using environmental DNA from water samples [J]. Biology Letters, 2008, 4(4):423-425
|
Thomsen P F, Kielgast J, Iversen L L, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples [J]. PLoS One, 2012, 7(8):e41732
|
Kelly R P, Port J A, Yamahara K M, et al. Using environmental DNA to census marine fishes in a large mesocosm [J]. PLoS One, 2014, 9(1):e86175
|
徐念, 常剑波. 长江中下游干流环境DNA样本鱼类物种检测的初步研究[J]. 水生态学杂志, 2016, 37(5):49-55
Xu N, Chang J B. Preliminary study on fish species detection in the middle and lower Yangtze River using environmental DNA [J]. Journal of Hydroecology, 2016, 37(5):49-55(in Chinese)
|
蒋佩文, 李敏, 张帅, 等. 基于环境DNA宏条码和底拖网的珠江河口鱼类多样性[J]. 水生生物学报, 2022, 46(11):1701-1711
Jiang P W, Li M, Zhang S, et al. Investigating the fish diversity in Pearl River Estuary based on environmental DNA matebarcoding and bottom trawling [J]. Acta Hydrobiologica Sinica, 2022, 46(11):1701-1711(in Chinese)
|
舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究[J]. 水生生物学报, 2020, 44(5):1080-1086
Shu L, Lin J Y, Xu Y, et al. Investigating the fish diversity in Erhai Lake based on environmental DNA metabarcoding [J]. Acta Hydrobiologica Sinica, 2020, 44(5):1080-1086(in Chinese)
|
Sigsgaard E E, Nielsen I B, Carl H, et al. Seawater environmental DNA reflects seasonality of a coastal fish community [J]. Marine Biology, 2017, 164(6):128
|
Thomsen P F, Willerslev E. Environmental DNA:An emerging tool in conservation for monitoring past and present biodiversity [J]. Biological Conservation, 2015, 183:4-18
|
Miya M. Environmental DNA metabarcoding:A novel method for biodiversity monitoring of marine fish communities [J]. Annual Review of Marine Science, 2022, 14:161-185
|
Antognazza C M, Britton R J, Read D S, et al. Application of eDNA metabarcoding in a fragmented lowland river:Spatial and methodological comparison of fish species composition [J]. Environmental DNA, 2021, 3(2):458-471
|
张先炳, 杨胜发, 杨威, 等. 长江上游宜宾-江津与涪陵-丰都江段鱼类早期资源分布研究[J]. 淡水渔业, 2021, 51(5):51-59
Zhang X B, Yang S F, Yang W, et al. The distribution of the early-stage fish resources between Yibin-Jiangjin and Fuling-Fengdu in the upper reaches of the Yangtze River [J]. Freshwater Fisheries, 2021, 51(5):51-59(in Chinese)
|
刘飞, 林鹏程, 黎明政, 等. 长江流域鱼类资源现状与保护对策[J]. 水生生物学报, 2019, 43(S1):144-156
Liu F, Lin P C, Li M Z, et al. Situations and conservation strategies of fish resources in the Yangtze River Basin [J]. Acta Hydrobiologica Sinica, 2019, 43(S1):144-156(in Chinese)
|
周园园. 基于能值生态足迹的微型城镇生态安全研究:以重庆市江北区为例[D]. 重庆:西南大学, 2016:17-20 Zhou Y Y. Study on the ecological security of miniature town based on the emergy-ecological footprint model [D]. Chongqing:Southwest University, 2016:17
-20(in Chinese)
|
刘玥. 嘉陵江中游鱼类资源与垂钓渔业现状研究[D]. 重庆:西南大学, 2021:1-7 Liu Y. The fish resources and angling fishery status in the middle reaches of Jialing River [D]. Chongqing:Southwest University, 2021:1
-7(in Chinese)
|
林婷. 御临河河岸带不同生境下植被组成特点研究[D]. 重庆:西南大学, 2020:13-20 Lin T. Study on the characteristics of vegetation composition in different habitats in the riparian zone of Yulin River [D]. Chongqing:Southwest University, 2020:13
-20(in Chinese)
|
曹文宣. 有关长江流域鱼类资源保护的几个问题[J]. 长江流域资源与环境, 2008, 17(2):163-164
Cao W X. Problems on the protection of fish resources in the Yangtze River Basin [J]. Resources and Environment in the Yangtze Basin, 2008, 17(2):163-164(in Chinese)
|
田辉伍, 何春, 刘明典, 等. 长江上游干流三层流刺网渔获物结构研究[J]. 淡水渔业, 2016, 46(5):37-42
Tian H W, He C, Liu M D, et al. Study on structure of gillnet catches in the upper reaches of the Yangtze River [J]. Freshwater Fisheries, 2016, 46(5):37-42(in Chinese)
|
Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding [J]. Molecular Ecology, 2016, 25(4):929-942
|
Zhang H. Physical habitat assessment of a remaining high-biodiversity reach of the Upper Yangtze River, China [J]. Applied Ecology and Environmental Research, 2016, 14(1):129-143
|
Shu L, Pan H M, Peng Z G. Collection and extraction of environmental DNA from lake water and amplification of fish genetic markers [J]. Bio-101, 2021:e1010673
|
Miya M, Sato Y, Fukunaga T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes:Detection of more than 230 subtropical marine species [J]. Royal Society Open Science, 2015, 2(7):150088
|
高天珩, 田辉伍, 叶超, 等. 长江上游珍稀特有鱼类国家级自然保护区干流段鱼类组成及其多样性[J]. 淡水渔业, 2013, 43(2):36-42
Gao T H, Tian H W, Ye C, et al. Diversity and composition of fish in the mainstream of national nature reserve of rare and endemic fish in the Upper Yangtze River [J]. Freshwater Fisheries, 2013, 43(2):36-42(in Chinese)
|
危起伟. 长江上游珍稀特有鱼类国家级自然保护区科学考察报告[M]. 北京:科学出版社, 2012:1-251
|
Chao A. Nonparametric estimation of the number of classes in a population [J]. Scandinavian Journal of Statistics, 1984, 11:265-270
|
Shannon C E. A mathematical theory of communication [J]. The Bell System Technical Journal, 1948, 27(3):379-423
|
Simpson E H. Measurement of diversity [J]. Nature, 1949, 163(4148):688
|
Pielou E C. The measurement of diversity in different types of biological collections [J]. Journal of Theoretical Biology, 1966, 13:131-144
|
何滔, 魏耀东, 卢群, 等. 长江上游珍稀特有鱼类自然保护区重庆段渔业资源现状调查[J]. 水产研究, 2018(2):85-97 He T, Wei Y D, Lu Q, et al. Status study on fishery resources in rare and endemic fish national nature reserve in Chongqing of Yangtze River [J]. Fisheries Research, 2018
(2):85-97(in Chinese)
|
杨海乐, 沈丽, 何勇凤, 等. 长江水生生物资源与环境本底状况调查(2017-2021)[J]. 水产学报, 2023, 47(2):3-30
Yang H L, Shen L, He Y F, et al. Status of aquatic organisms resources and their environments in the Yangtze River system (2017-2021) [J]. Journal of Fisheries of China, 2023, 47(2):3-30(in Chinese)
|
Ficetola G F, Pansu J, Bonin A, et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data [J]. Molecular Ecology Resources, 2015, 15(3):543-556
|
Anderson J T, Schumer G, Anders P J, et al. Confirmed observation:A North American green sturgeon Acipenser medirostris recorded in the Stanislaus River, California [J]. Journal of Fish and Wildlife Management, 2018, 9(2):624-630
|
Xu N, Zhu B, Shi F, et al. Monitoring seasonal distribution of an endangered anadromous sturgeon in a large river using environmental DNA [J]. Science of Nature, 2018, 105(11-12):62
|
Wang X Y, Lu G Q, Zhao L L, et al. Assessment of fishery resources using environmental DNA:Small yellow croaker (Larimichthys polyactis) in East China Sea [J]. PLoS One, 2020, 15(12):e0244495
|
Wang X Y, Lu G Q, Zhao L L, et al. Assessment of fishery resources using environmental DNA:The large yellow croaker (Larimichthys crocea) in the East China Sea [J]. Fisheries Research, 2021, 235:105813
|
Morita K, Fukuwaka M A, Tanimata N, et al. Size-dependent thermal preferences in a pelagic fish [J]. Oikos, 2010, 119(8):1265-1272
|
Sandersfeld T, Mark F C, Knust R. Temperature-depen-dent metabolism in Antarctic fish:Do habitat temperature conditions affect thermal tolerance ranges? [J]. Polar Biology, 2017, 40(1):141-149
|
王珂. 三峡库区鱼类时空分布特征及与相关因子关系分析[D]. 北京:中国水利水电科学研究院, 2013:47-74
|
王敏, 朱峰跃, 刘绍平, 等. 三峡库区汉丰湖鱼类群落结构的季节变化[J]. 湖泊科学, 2017, 29(2):439-447
Wang M, Zhu F Y, Liu S P, et al. Seasonal variations of fish community structure of Lake Hanfeng in Three Gorges Reservoir region [J]. Journal of Lake Sciences, 2017, 29(2):439-447(in Chinese)
|
董纯, 杨志, 龚云, 等. 三峡库区干流鱼类资源现状与物种多样性保护[J]. 水生态学杂志, 2019, 40(1):15-21
Dong C, Yang Z, Gong Y, et al. Fish resource status and biodiversity conservation in the main channel of Three Gorges Reservoir [J]. Journal of Hydroecology, 2019, 40(1):15-21(in Chinese)
|
蒋成勇. 长江重庆主城段河道碳同位素时空分布研究[D]. 重庆:重庆交通大学, 2021:8-11 Jiang C Y. Study on the spatial and temporal distribution of carbon isotope in the main city section of the Yangtze River in Chongqing [D]. Chongqing:Chongqing Jiaotong University, 2021:8
-11(in Chinese)
|
邬志红. 长江嘉陵江交汇口水力特性数值模拟研究[D]. 重庆:重庆交通大学, 2012:19-24 Wu Z H. Numerical simulation of hydraulic characteristics in confluence between Yangtze River and Jialing River [D]. Chongqing:Chongqing Jiaotong University, 2012:19
-24(in Chinese)
|
Barnes M A, Turner C R, Jerde C L, et al. Environmental conditions influence eDNA persistence in aquatic systems [J]. Environmental Science & Technology, 2014, 48(3):1819-1827
|
刘军, 曹文宣, 常剑波. 长江上游主要河流鱼类多样性与流域特征关系[J]. 吉首大学学报(自然科学版), 2004, 25(1):42-47 Liu J, Cao W X, Chang J B. The relationship between species diversity of fish and basin characteristics of main rivers in the upper reaches of the Yangtze River [J]. Journal of Jishou University (Natural Science Edition), 2004, 25(1):42-47(in Chinese)
|
Tsuji S, Yamanaka H, Minamoto T. Effects of water pH and proteinase K treatment on the yield of environmental DNA from water samples [J]. Limnology, 2017, 18(1):1-7
|
Jo T, Murakami H, Yamamoto S, et al. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution [J]. Ecology and Evolution, 2019, 9(3):1135-1146
|
李苗. 基于eDNA技术对渤海中国对虾的定性与定量检测[D]. 上海:上海海洋大学, 2019:22-29 Li M. Qualitative and quantitative detection using eDNA technology:A case study of Fenneropenaeus chinensis in the Bohai [D]. Shanghai:Shanghai Ocean University, 2019:22
-29(in Chinese)
|
吴昀晟, 唐永凯, 李建林, 等. 环境DNA在长江江豚监测中的应用[J]. 中国水产科学, 2019, 26(1):124-132
Wu Y S, Tang Y K, Li J L, et al. The application of environmental DNA in the monitoring of the Yangtze finless porpoise, Neophocaena phocaenoides asaeorientalis [J]. Journal of Fishery Sciences of China, 2019, 26(1):124-132(in Chinese)
|
Zhang H, Yoshizawa S, Iwasaki W, et al. Seasonal fish assemblage structure using environmental DNA in the Yangtze Estuary and its adjacent waters [J]. Frontiers in Marine Science, 2019, 6:515
|
Strickler K M, Fremier A K, Goldberg C S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms [J]. Biological Conservation, 2015, 183:85-92
|