BYRNE C, SUBRAMANIAN G, PILLAI S C. Recent advances in photocatalysis for environmental applications[J]. Journal of Environmental Chemical Engineering, 2018, 6(3):3531-3555.
XING Z P, ZHANG J Q, CUI J Y, et al. Recent advances in floating TiO2-based photocatalysts for environmental application[J]. Applied Catalysis B:Environmental, 2018, 225:452-467.
SHAYEGAN Z, LEE C S, HAGHIGHAT F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase-A review[J]. Chemical Engineering Journal, 2018, 334:2408-2439.
万建新, 任学昌, 刘宏伟, 等. ZnO/g-C3N4复合型光催化剂的制备及其光催化性能[J]. 环境化学, 2018, 37(4):792-797. WAN J X, REN X C, LIU H W, et al. Preparation and photocatalytic properties of ZnO/g-C3N4 composite photocatalysts[J]. Environmental Chemistry, 2018, 37(4):792-797(in Chinese).
DHAKSHINAMOORTHY A, LI Z, GARCIA H. Catalysis and photocatalysis by metal organic frameworks[J]. Chemical Society Reviews, 2018, 47(22):8134-8172.
QU Y Q, DUAN X F. Progress, challenge and perspective of heterogeneous photocatalysts[J]. Chemical Society Reviews, 2013, 42(7):2568-2580.
LOW J X, DAI B Z, TONG T, et al. In Situ Irradiated X-Ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst[J]. Advanced Materials, 2019, 31(6):1802981.
LI B, CHEN X W, ZHANG T Y, et al. Photocatalytic selective hydroxylation of phenol to dihydroxybenzene by BiOI/TiO2 pn heterojunction photocatalysts for enhanced photocatalytic activity[J]. Applied Surface Science, 2018, 439:1047-1056.
HE W J, SUN Y J, JIANG G M, et al. Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling:Photocatalysis mechanism and reaction pathway[J]. Applied Catalysis B:Environmental, 2018, 232:340-347.
ZHANG L W, ZHU Y F. A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts[J].Catalysis Science & Technology, 2012, 2(4):694-706.
SHI R, HUANG G L, LIN J, et al. Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution[J]. The Journal of Physical Chemistry C, 2009, 113(45):19633-19638.
BHATTACHARYA C, LEE H C, BARD A J. Rapid screening by scanning electrochemical microscopy (SECM) of dopants for Bi2WO6 improved photocatalytic water oxidation with Zn doping[J]. The Journal of Physical Chemistry C, 2013, 117(19):9633-9640.
SHANG M, WANG W Z, ZHANG L, et al. Bi2WO6 with significantly enhanced photocatalytic activities by nitrogen doping[J].Materials Chemistry and Physics, 2010, 120(1):155-159
BAHADORI E, TRIPODI A, VILLA A, et al. High pressure CO2 photoreduction using Au/TiO2:Unravelling the effect of co-catalysts and of titania polymorphs[J]. Catalysis Science & Technology, 2019, 9(9):2253-2265.
LI J Q, GUO Z Y, ZHU Z F. Ag/Bi2WO6 plasmonic composites with enhanced visible photocatalytic activity. Ceramics International, 2014,40(5):6495-6501.
FU H B, PAN C S, YAO W Q, et al. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6[J]. The Journal of Physical Chemistry B, 2005,109(47):22432-22439.
TANG Y X, WE P X, LAI Y K, et al. Hierarchical TiO2 nanoflakes and nanoparticles hybrid structure for improved photocatalytic activity[J]. The Journal of Physical Chemistry C, 2012, 116(4):2772-2780.
HU C, LAN Y Q, QU J H, et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azo dyes and bacteria[J].The Journal of Physical Chemistry B, 2006, 110(9):4066-4072.
REN J, WANG W Z, SUN S M, et al. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation[J]. Applied Catalysis B:Environmental, 2009, 92(1-2):50-55.
张聪, 米屹东, 马东, 等. CeO2/g-C3N4光催化剂的制备及性能[J]. 环境化学, 2017, 36(1):147-152 ZHANG C, MI Y D, MA D, et al. Preparation and photocatalytic performance of CeO2/g-C3N4 photocatalysts[J]. Environmental Chemistry, 2017, 36(1):147-152(in Chinese).
KANNA M, WONGNAWA S. Mixed amorphous and nanocrystalline TiO2 powders prepared by sol-gel method:characterization and photocatalytic study[J]. Materials Chemistry and Physics, 2008, 110(1):166-175.
WANG D J,XUE G L,ZHEN Y Z,et al. Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities. Journal of Materials Chemistry, 2012, 22(11):4751-4758
吴斌, 方艳芬, 任慧君, 等. g-C3N4光催化降解2,4-DCP的活性及机理[J]. 环境化学, 2017, 36(7):1484-1491 WU B, FANG Y F, REN H J, et al. Activity and mechanism of photocatalytic degradation for 2,4-DCP over g-C3N4[J]. Environmental Chemistry, 2017, 36(7):1484-1491(in Chinese).
LIU Y M, TANG H B, LV H, et al. Facile hydrothermal synthesis of TiO2/Bi2WO6 hollow microsphere with enhanced visible-light photoactivity[J]. Powder Technology, 2015, 283:246-253.
YUE D T, ZHANG Z C, TIAN Z Y, et al. Highly photocatalytic active thiomolybdate[Mo3S13]2- clusters/Bi2WO6 nanocomposites[J]. Catalysis Today, 2016, 274:22-27.
CHONG B, CHEN L, WANG W T, et al. Visible-light-driven Ag-decorated g-C3N4/Bi2WO6 Z-scheme composite for high photocatalytic activity[J]. Materials Letters, 2017, 204:149-153.
DEMIRCI S, DIKICI T, YURDDASKAL M, et al. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances[J]. Applied Surface Science, 2016, 390:591-601.