Aizen M A, Harder L D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination[J]. Current Biology, 2009, 19(11):915-918
|
Winfree R, Gross B J, Kremen C. Valuing pollination services to agriculture[J]. Ecological Economics, 2011, 71:80-88
|
Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, et al. Functional properties of honey, propolis, and royal jelly[J]. Journal of Food Science, 2008, 73(9):R117-R124
|
Oldroyd B P. What's killing American honey bees?[J]. PLoS Biology, 2007, 5(6):e168
|
McMenamin A J, Genersch E. Honey bee colony losses and associated viruses[J]. Current Opinion in Insect Science, 2015, 8:121-129
|
VanEngelsdorp D, Traynor K S, Andree M, et al. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology[J]. PLoS One, 2017, 12(7):e0179535
|
Johnson R M, Ellis M D, Mullin C A, et al. Pesticides and honey bee toxicity-USA[J]. Apidologie, 2010, 41(3):312-331
|
荣杰峰, 韦航, 李亦军, 等. 食品中氟虫腈残留量的检测方法研究进展[J]. 广州化工, 2013, 41(8):16-17
, 21 Rong J F, Wei H, Li Y J, et al. Progress of methods for determination of fipronil residue in food[J]. Guangzhou Chemical Industry, 2013, 41(8):16-17, 21(in Chinese)
|
Chen H P, Gao G W, Yin P, et al. Enantioselectivity and residue analysis of fipronil in tea (Camellia sinensis) by ultra-performance liquid chromatography Orbitrap mass spectrometry[J]. Food Additives & Contaminants:Part A, 2018, 35(10):2000-2010
|
中华人民共和国国家卫生和计划生育委员会, 中华人民共和国农业部, 中华人民共和国国家食品药品监督管理总局. 食品安全国家标准食品中农药最大残留限量:GB/T 2763-2016[S]. 北京:中国标准出版社, 2017
|
冯义志, 张爱娟, 李文平, 等. 高效液相色谱串联质谱法快速测定氟虫腈及其代谢物在花生和土壤中残留[J]. 现代农药, 2018, 17(6):35-39
Feng Y Z, Zhang A J, Li W P, et al. Determination of the residual fipronil and its metabolite in peanut and soil by HPLC-MS/MS[J]. Modern Agrochemicals, 2018, 17(6):35-39(in Chinese)
|
苑婷婷, 储成群, 权美英, 等. 蔬菜中违禁农药残留状况分析[J]. 山东化工, 2018, 47(14):126-127
, 129 Yuan T T, Chu C Q, Quan M Y, et al. Analysis on prohibited pesticides residues in vegetables[J]. Shandong Chemical Industry, 2018, 47(14):126-127, 129(in Chinese)
|
龚久平, 杨晓霞, 褚能明, 等. 重庆产地蔬菜农药残留调查及健康风险评价[J]. 南方农业, 2018, 12(31):5-10
Gong J P, Yang X X, Chu N M, et al. Investigation and health risk assessment of vegetable pesticide residues in Chongqing[J]. South China Agriculture, 2018, 12(31):5-10(in Chinese)
|
黄小龙, 林娜, 姚婷婷, 等. 华南某市蔬菜基地土壤中氟虫腈残留状况调查分析[J]. 湖南农业科学, 2020(6):89-91 Huang X L, Lin N, Yao T T, et al. Investigation on soil fipronil residue of vegetable production bases of a city in South China[J]. Hunan Agricultural Sciences, 2020
(6):89-91(in Chinese)
|
Gunasekara A S, Truong T, Goh K S, et al. Environmental fate and toxicology of fipronil[J]. Journal of Pesticide Science, 2007, 32(3):189-199
|
苍涛, 王新全, 王彦华, 等. 手性氟虫腈对意大利蜜蜂和稻螟赤眼蜂的急性毒性及安全评价[J]. 生态毒理学报, 2012, 7(3):326-330
Cang T, Wang X Q, Wang Y H, et al. Acute toxicities and safety evaluation of chiral fipronil to Apis mellifera L. and Trichogramma japonicum Ashmead[J]. Asian Journal of Ecotoxicology, 2012, 7(3):326-330(in Chinese)
|
Holder P J, Jones A, Tyler C R, et al. Fipronil pesticide as a suspect in historical mass mortalities of honey bees[J]. PNAS, 2018, 115(51):13033-13038
|
Zaluski R, Kadri S M, Alonso D P, et al. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses[J]. Environmental Toxicology and Chemistry, 2015, 34(5):1062-1069
|
Kairo G, Biron D G, Ben Abdelkader F, et al. Nosema ceranae, fipronil and their combination compromise honey bee reproduction via changes in male physiology[J]. Scientific Reports, 2017, 7:8556
|
Zaluski R, Justulin L A, Orsi R D O. Field-relevant doses of the systemic insecticide fipronil and fungicide pyraclostrobin impair mandibular and hypopharyngeal glands in nurse honeybees (Apis mellifera)[J]. Scientific Reports, 2017, 7:15217
|
Paris L, Peghaire E, Moné A, et al. Honeybee gut microbiota dysbiosis in pesticide/parasite co-exposures is mainly induced by Nosema ceranae[J]. Journal of Invertebrate Pathology, 2020, 172:107348
|
Organization for Economic Co-operation and Development (OECD). Test No. 237:Honey bee (Apis mellifera) larval toxicity test, single exposure[R]. Paris:OECD, 2013
|
中华人民共和国农业部. 化学农药意大利蜜蜂幼虫毒性试验准则:NY/T 3085-2017[S]. 北京:中华人民共和国农业部, 2002 Ministry of Agriculture of the People's Republic of China. Chemical pesticide-Guideline on honeybee (Apis mellifera L.) larval toxicity test[S]. Beijing:Ministry of Agriculture of the People's Republic of China, 2002(in Chinese)
|
牛新月. 氟氯苯氰菊酯对意大利蜜蜂(Apis mellifera Ligustica L.)的毒性作用研究[D]. 新乡:河南科技学院, 2019:21-24 Niu X Y. Toxic effects of flumethrin on Apis mellifera Ligustica L. (Hymenoptera:Apidae)[D]. Xinxiang:Henan Institute of Science and Technology, 2019:21
-24(in Chinese)
|
Zhu W Y, Schmehl D R, Mullin C A, et al. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae[J]. PLoS One, 2014, 9(1):e77547
|
Crailsheim K, Brodschneider R, Aupinel P, et al. Standard methods for artificial rearing of Apis mellifera larvae[J]. Journal of Apicultural Research, 2013, 52(1):1-16
|
Kairo G, Poquet Y, Haji H, et al. Assessment of the toxic effect of pesticides on honey bee drone fertility using laboratory and semifield approaches:A case study of fipronil[J]. Environmental Toxicology and Chemistry, 2017, 36(9):2345-2351
|
Simon-Delso N, Amaral-Rogers V, Belzunces L P, et al. Systemic insecticides (neonicotinoids and fipronil):Trends, uses, mode of action and metabolites[J]. Environmental Science and Pollution Research, 2015, 22(1):5-34
|
Jacob C R O, Soares H M, Nocelli R C F, et al. Impact of fipronil on the mushroom bodies of the stingless bee Scaptotrigona postica[J]. Pest Management Science, 2015, 71(1):114-122
|
El Hassani A K, Dacher M, Gauthier M, et al. Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera)[J]. Pharmacology Biochemistry and Behavior, 2005, 82(1):30-39
|
Kairo G, Provost B, Tchamitchian S, et al. Drone exposure to the systemic insecticide fipronil indirectly impairs queen reproductive potential[J]. Scientific Reports, 2016, 6:31904
|
Silva Cruz A, Silva-Zacarin E C M, Bueno O C, et al. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae[J]. Cell Biology and Toxicology, 2010, 26(2):165-176
|
Schlenk D, Huggett D B, Allgood J, et al. Toxicity of fipronil and its degradation products to Procambarus sp.:Field and laboratory studies[J]. Archives of Environmental Contamination and Toxicology, 2001, 41(3):325-332
|
Gan J, Bondarenko S, Oki L, et al. Occurrence of fipronil and its biologically active derivatives in urban residential runoff[J]. Environmental Science & Technology, 2012, 46(3):1489-1495
|
Castilhos D, Dombroski J L D, Bergamo G C, et al. Neonicotinoids and fipronil concentrations in honeybees associated with pesticide use in Brazilian agricultural areas[J]. Apidologie, 2019, 50(5):657-668
|
牛新月, 齐素贞, 吴黎明, 等. 乙虫腈悬浮剂对新出房意大利蜜蜂的毒性研究[J]. 生态毒理学报, 2019, 14(3):203-213
Niu X Y, Qi S Z, Wu L M, et al. Toxicity studies of ethiprole suspension concentrate to newly emerged honey bees (Apis mellifera L.)[J]. Asian Journal of Ecotoxicology, 2019, 14(3):203-213(in Chinese)
|
Wang X, Martínez M A, Wu Q H, et al. Fipronil insecticide toxicology:Oxidative stress and metabolism[J]. Critical Reviews in Toxicology, 2016, 46(10):876-899
|
Chakrabarti P, Carlson E A, Lucas H M, et al. Field rates of SivantoTM (flupyradifurone) and Transform(sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.)[J]. PLoS One, 2020, 15(5):e0233033
|
Mulvey J, Cresswell J E. Time-dependent effects on bumble bees of dietary exposures to farmland insecticides (imidacloprid, thiamethoxam and fipronil)[J]. Pest Management Science, 2020, 76(8):2846-2853
|
Simon-Delso N, San Martin G, Bruneau E, et al. Time-to-death approach to reveal chronic and cumulative toxicity of a fungicide for honeybees not revealed with the standard ten-day test[J]. Scientific Reports, 2018, 8:7241
|
Qi S Z, Zhu L Z, Wang D H, et al. Flumethrin at honey-relevant levels induces physiological stresses to honey bee larvae (Apis mellifera L.) in vitro[J]. Ecotoxicology and Environmental Safety, 2020, 190:110101
|
Berenbaum M R, Johnson R M. Xenobiotic detoxification pathways in honey bees[J]. Current Opinion in Insect Science, 2015, 10:51-58
|
Yao J X, Zhu Y C, Adamczyk J, et al. Influences of acephate and mixtures with other commonly used pesticides on honey bee (Apis mellifera) survival and detoxification enzyme activities[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 209:9-17
|
Nielsen S A, Brødsgaard C J, Hansen H. Effects on detoxification enzymes in different life stages of honey bees (Apis mellifera L., Hymenoptera:Apidae) treated with a synthetic pyrethroid (flumethrin)[J]. Alternatives to Laboratory Animals, 2000, 28(3):437-443
|
Smirle M J. The influence of colony population and brood rearing intensity on the activity of detoxifying enzymes in worker honey bees[J]. Physiological Entomology, 2008, 18(4):420-424
|
Gong Y H, Diao Q Y. Current knowledge of detoxification mechanisms of xenobiotic in honey bees[J]. Ecotoxicology, 2017, 26(1):1-12
|
Menezes C, Leitemperger J, Murussi C, et al. Effect of diphenyl diselenide diet supplementation on oxidative stress biomarkers in two species of freshwater fish exposed to the insecticide fipronil[J]. Fish Physiology and Biochemistry, 2016, 42(5):1357-1368
|
Roat T C, Santos-Pinto J R A, Santos L D, et al. Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub-lethal doses of the insecticide fipronil[J]. Ecotoxicology, 2014, 23(9):1659-1670
|
Carvalho S M, Belzunces L P, Carvalho G A, et al. Enzymatic biomarkers as tools to assess environmental quality:A case study of exposure of the honeybee Apis mellifera to insecticides[J]. Environmental Toxicology and Chemistry, 2013, 32(9):2117-2124
|
靳三省, 孟丽峰, 刁青云. 吡虫啉对意大利蜜蜂乙酰胆碱酯酶的亚致死效应[J]. 应用昆虫学报, 2015, 52(2):315-323
Jin S X, Meng L F, Diao Q Y. Effect of sublethal doses of imidacloprid on acetylcholinesterase activity in Apis mellifera[J]. Chinese Journal of Applied Entomology, 2015, 52(2):315-323(in Chinese)
|
Li Z G, Li M, He J F, et al. Differential physiological effects of neonicotinoid insecticides on honey bees:A comparison between Apis mellifera and Apis cerana[J]. Pesticide Biochemistry and Physiology, 2017, 140:1-8
|
Zhu Y C, Yao J X, Adamczyk J, et al. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera)[J]. PLoS One, 2017, 12(5):e0176837
|
Guo D H, Luo J P, Zhou Y N, et al. ACE:An efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data[J]. BMC Bioinformatics, 2017, 18(1):330
|
Zhang Y X, Wang X, Yang B J, et al. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens[J]. Journal of Neurochemistry, 2015, 135(4):686-694
|
孟祥坤, 缪丽君, 董帆, 等. 无脊椎动物乙酰胆碱酯酶研究进展[J]. 环境昆虫学报, 2019, 41(3):508-519
Meng X K, Miao L J, Dong F, et al. Advances in the research on invertebrate acetylcholinesterase[J]. Journal of Environmental Entomology, 2019, 41(3):508-519(in Chinese)
|
Kim Y H, Kim J H, Kim K, et al. Expression of acetylcholinesterase 1 is associated with brood rearing status in the honey bee, Apis mellifera[J]. Scientific Reports, 2017, 7:39864
|
Shapira M, Thompson C K, Soreq H, et al. Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies[J]. Journal of Molecular Neuroscience, 2001, 17(1):1-12
|
黄梅花. QuEChERS结合液相色谱串联质谱法同时测定鸡蛋中氟虫腈与氯霉素等7种农兽药残留[J]. 食品安全质量检测学报, 2020, 11(6):1821-1826
Huang M H. Simultaneous determination of fipronil, chloramphenicol and other 7 kinds of pesticide and veterinary drug residues in eggs by liquid chromatography tandem mass spectrometry with QuEChERS[J]. Journal of Food Safety & Quality, 2020, 11(6):1821-1826(in Chinese)
|