SnO2-Sb/碳纳米管复合电极的制备及催化降解低浓度头孢他啶

段平洲, 黄鸽黎, 胡翔. SnO2-Sb/碳纳米管复合电极的制备及催化降解低浓度头孢他啶[J]. 环境化学, 2019, 38(5): 991-998. doi: 10.7524/j.issn.0254-6108.2018062201
引用本文: 段平洲, 黄鸽黎, 胡翔. SnO2-Sb/碳纳米管复合电极的制备及催化降解低浓度头孢他啶[J]. 环境化学, 2019, 38(5): 991-998. doi: 10.7524/j.issn.0254-6108.2018062201
DUAN Pingzhou, HUANG Geli, HU Xiang. Fabrication of SnO2-Sb/MWCNTs composite electrode and the anodic degradation of low concentration ceftazidime[J]. Environmental Chemistry, 2019, 38(5): 991-998. doi: 10.7524/j.issn.0254-6108.2018062201
Citation: DUAN Pingzhou, HUANG Geli, HU Xiang. Fabrication of SnO2-Sb/MWCNTs composite electrode and the anodic degradation of low concentration ceftazidime[J]. Environmental Chemistry, 2019, 38(5): 991-998. doi: 10.7524/j.issn.0254-6108.2018062201

SnO2-Sb/碳纳米管复合电极的制备及催化降解低浓度头孢他啶

  • 基金项目:

    国家自然科学基金(51278022)资助.

Fabrication of SnO2-Sb/MWCNTs composite electrode and the anodic degradation of low concentration ceftazidime

  • Fund Project: Supported by the National Natural Science Foundation of China (51278022).
  • 摘要: 利用溶胶凝胶法制备了SnO2-Sb掺杂碳纳米管复合材料,采用热压法将其固定在不锈钢网上制成平面二维电极,借助SEM、XRD对其形貌、微观结构及元素结构进行分析,通过循环伏安曲线(CV)、极化曲线(Tafel),线性伏安(LVS)对其电化学性质进行了表征.结果显示,锡锑金属均匀地负载到了碳纳米管上且具有良好的电催化活性和稳定性,金属的掺杂使得碳纳米管电极具有更高的析氧电位和更小的阻抗.使用荧光光谱法测试了羟基自由基的产生能力,通过循环5次降解实验验证了电极的稳定性.降解实验表明,SnO2-Sb/碳纳米管电极对低浓度头孢他啶具有很高的降解效率,在2 mA·cm-2的电流强度下,60 min内可以达到90%的去除率.最后,针对不同的电解质和电流强度对电催化降解效率的影响,也通过实验数据进行了分析.
  • 加载中
  • [1] ZHENG Q, ZHANG R, WANG Y, et al. Occurrence and distribution of antibiotics in the Beibu Gulf, China:Impacts of river discharge and aquaculture activities[J]. Marine Environmental Research, 2012, 78(8):26-33.
    [2] SEBASTINE I M, WAKEMAN R J. Consumption and environmental hazards of pharmaceutical substances in the UK[J]. Process Safety & Environmental Protection, 2003, 81(4):229-235.
    [3] FENG L, HULLEBUSCH E D V, RODRIGO M A, et al. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review[J]. Chemical Engineering Journal, 2013, 228(1):944-964.
    [4] WANG J, WANG S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater:A review.[J]. Journal of Environmental Management, 2016, 182:620-640.
    [5] MARTINEZHUITLE C A, RODRIGO M A, SIRES I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants:A critical review.[J]. Chemical Reviews, 2015, 115(24):13362-13407.
    [6] SARKKA H, BHATNAGAR A, SILLANPAA M. Recent developments of electro-oxidation in water treatment-A review.[J]. Journal of Electroanalytical Chemistry, 2015, 754(2):46-56.
    [7] 朱连亮, 王玉民, 邵长林,等. 长寿命Ti/TiO2/SbO2-SnO2/SnO2-Sb-CeO2制备及电催化废水性能[J]. 环境化学, 2014,33(6):992-998.

    ZHU L L, WANG Y M, SHAO C L, et al. Fabrication of long-life Ti/TiO2/SbO2-SnO2/SnO2-Sb-CeO2 electrodes and application in electrochemical wastewater treatment[J]. Environmental Chemistry, 2014, 33(6):992-998(in Chinese).

    [8] 邱凌峰, 倪尔灵. 电催化氧化阳极制备及其降酚特性[J]. 环境化学, 2010,29(6):1019-1026.

    QIU L F, NI E L. Preparation of dimensionless stable anode in the electro-catalytic oxidation and its phenoldegrading characteristics[J]. Environmental Chemistry, 2010, 29(6):1019-1026(in Chinese).

    [9] JAME S A, ZHOU Z. Electrochemical carbon nanotube filters for water and wastewater treatment[J]. Nanotechnology Reviews, 2016, 5(1):41-50.
    [10] LI F, JIANG X, ZHAO J, et al. Graphene oxide:A promising nanomaterial for energy and environmental applications[J]. Nano Energy, 2015, 16:488-515.
    [11] YI F, CHEN S, YUAN C. Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater[J]. Journal of Hazardous Materials, 2008, 157(1):79-87.
    [12] MOTOC S, MANEA F, POP A, et al. Electrochemical degradation of pharmaceutical effluents on carbon-based electrodes[J]. Environmental Engineering & Management Journal, 2012, 11(11):627-634.
    [13] DUAN T, WEN Q, YE C, et al. Enhancing electrocatalytic performance of Sb-doped SnO2, electrode by compositing nitrogen-doped graphene nanosheets[J]. Journal of Hazardous Materials, 2014, 280:304-314.
    [14] GUO X, WAN J, YU X, et al. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium[J]. Chemosphere, 2016, 164:421-429.
    [15] LI Y, LI Y, XIE B, et al. Efficient mineralization of ciprofloxacin using a 3D CexZr1-xO2/RGO composite cathode[J]. Environmental Science Nano, 2016, 4(2):425-436.
    [16] HU X, YU Y, SUN Z. Preparation and characterization of cerium-doped multiwalled carbon nanotubes electrode for the electrochemical degradation of low-concentration ceftazidime in aqueous solutions[J]. Electrochimica Acta, 2016, 199:80-91.
    [17] 吴根英, 许双姐, 王君翔,等. FR-CNTs-PbO2/SnO2-Sb/Ti电极性能及电催化降解罗丹明B[J]. 环境化学, 2013,32(3):358-365.

    WU G Y, XU S J, WANG J X, et al. Study on the properties of FR-CNTs-PbO2/SnO2-Sb/Ti electrode and its application in electro-catalytic degradation of Rhodamine B[J]. Environmental Chemistry, 2013, 32(3):358-365(in Chinese).

    [18] 温福雪, 王栋, 张兴文,等. Fe/CHI-MWNTs修饰石墨阴极电Fenton氧化4-硝基酚[J]. 水处理技术, 2014,40(9):62-65.

    WEN F X, WANG D, ZHANG X W, et al. Electro-Fenton degradation of p-nitrophenol using fe/chi-mwnts modified graphite cathode[J]. Environmental Chemistry, 2014, 40(9):62-65(in Chinese).

    [19] LIU Z, ZHU M, ZHAO L, et al. Aqueous tetracycline degradation by coal-based carbon electrocatalytic filtration membrane:Effect of nano antimony-doped tin dioxide coating[J]. Chemical Engineering Journal, 2016, 314:59-68.
    [20] ISHIBASHI K I, FUJISHIMA A, WATANABE T, et al. Quantum yields of active oxidative species formed on TiO2 photocatalyst[J]. Journal of Photochemistry & Photobiology A Chemistry, 2000, 134(1-2):139-142.
    [21] YONG Y A, YANG S Y, CHOI C, et al. Electrocatalytic activities of Sb-SnO2, and Bi-TiO2, anodes for water treatment:Effects of electrocatalyst composition and electrolyte[J]. Catalysis Today, 2017, 282:57-64.
    [22] YANG K, LIU Y, QIAO J. Electrodeposition preparation of Ce-doped Ti/SnO2-Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water[J]. Separation & Purification Technology, 2017, 189:459-466.
    [23] XU Z, LIU H, NIU J, et al. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater[J]. Journal of Hazardous Materials, 2017, 327:144-152.
    [24] GARCIA-ESPINOZA J D, MIJAYLOVA-NACHEVA P, AVILES-FLORES M. Electrochemical carbamazepine degradation:Effect of the generated active chlorine, transformation pathways and toxicity[J]. Chemosphere, 2018, 192:142-151.
    [25] LAN Y, COETSIER C, CAUSSERAND C, et al. On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode[J]. Electrochimica Acta, 2017, 231:309-318.
    [26] BURGOS-CASTILLO R C, SIRES I, SILLANPAA M, et al. Application of electrochemical advanced oxidation to bisphenol A degradation in water. Effect of sulfate and chloride ions[J]. Chemosphere, 2018, 194:812-820.
    [27] DUAN X, MA F, YUAN Z, et al. Comparative studies on the electro-catalytic oxidation performance of surfactant-carbon nanotube-modified PbO2, electrodes[J]. Journal of Electroanalytical Chemistry, 2012, 677-680(4):90-100.
  • 加载中
计量
  • 文章访问数:  1165
  • HTML全文浏览数:  1141
  • PDF下载数:  98
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-06-22
  • 刊出日期:  2019-05-15
段平洲, 黄鸽黎, 胡翔. SnO2-Sb/碳纳米管复合电极的制备及催化降解低浓度头孢他啶[J]. 环境化学, 2019, 38(5): 991-998. doi: 10.7524/j.issn.0254-6108.2018062201
引用本文: 段平洲, 黄鸽黎, 胡翔. SnO2-Sb/碳纳米管复合电极的制备及催化降解低浓度头孢他啶[J]. 环境化学, 2019, 38(5): 991-998. doi: 10.7524/j.issn.0254-6108.2018062201
DUAN Pingzhou, HUANG Geli, HU Xiang. Fabrication of SnO2-Sb/MWCNTs composite electrode and the anodic degradation of low concentration ceftazidime[J]. Environmental Chemistry, 2019, 38(5): 991-998. doi: 10.7524/j.issn.0254-6108.2018062201
Citation: DUAN Pingzhou, HUANG Geli, HU Xiang. Fabrication of SnO2-Sb/MWCNTs composite electrode and the anodic degradation of low concentration ceftazidime[J]. Environmental Chemistry, 2019, 38(5): 991-998. doi: 10.7524/j.issn.0254-6108.2018062201

SnO2-Sb/碳纳米管复合电极的制备及催化降解低浓度头孢他啶

  • 1. 北京化工大学化学工程学院, 北京, 100029
基金项目:

国家自然科学基金(51278022)资助.

摘要: 利用溶胶凝胶法制备了SnO2-Sb掺杂碳纳米管复合材料,采用热压法将其固定在不锈钢网上制成平面二维电极,借助SEM、XRD对其形貌、微观结构及元素结构进行分析,通过循环伏安曲线(CV)、极化曲线(Tafel),线性伏安(LVS)对其电化学性质进行了表征.结果显示,锡锑金属均匀地负载到了碳纳米管上且具有良好的电催化活性和稳定性,金属的掺杂使得碳纳米管电极具有更高的析氧电位和更小的阻抗.使用荧光光谱法测试了羟基自由基的产生能力,通过循环5次降解实验验证了电极的稳定性.降解实验表明,SnO2-Sb/碳纳米管电极对低浓度头孢他啶具有很高的降解效率,在2 mA·cm-2的电流强度下,60 min内可以达到90%的去除率.最后,针对不同的电解质和电流强度对电催化降解效率的影响,也通过实验数据进行了分析.

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回