贻贝仿生三维石墨烯制备及对亚甲基蓝的吸附

刘怡虹, 周廷尧, 胡蓉, 许德超, 彭盛华, 尹魁浩. 贻贝仿生三维石墨烯制备及对亚甲基蓝的吸附[J]. 环境化学, 2018, 37(11): 2540-2547. doi: 10.7524/j.issn.0254-6108.2018011101
引用本文: 刘怡虹, 周廷尧, 胡蓉, 许德超, 彭盛华, 尹魁浩. 贻贝仿生三维石墨烯制备及对亚甲基蓝的吸附[J]. 环境化学, 2018, 37(11): 2540-2547. doi: 10.7524/j.issn.0254-6108.2018011101
LIU Yihong, ZHOU Tingyao, HU Rong, XU Dechao, PENG Shenghua, YIN Kuihao. Synthesis of mussel-inspired three-dimensional graphene materials and their application in methylene blue adsorption[J]. Environmental Chemistry, 2018, 37(11): 2540-2547. doi: 10.7524/j.issn.0254-6108.2018011101
Citation: LIU Yihong, ZHOU Tingyao, HU Rong, XU Dechao, PENG Shenghua, YIN Kuihao. Synthesis of mussel-inspired three-dimensional graphene materials and their application in methylene blue adsorption[J]. Environmental Chemistry, 2018, 37(11): 2540-2547. doi: 10.7524/j.issn.0254-6108.2018011101

贻贝仿生三维石墨烯制备及对亚甲基蓝的吸附

  • 基金项目:

    深圳市科技计划基础研究项目(JCYJ20150730155600636)资助.

Synthesis of mussel-inspired three-dimensional graphene materials and their application in methylene blue adsorption

  • Fund Project: Supported by Basic Research Project of Shenzhen Science and Technology Plan(JCYJ20150730155600636).
  • 摘要: 受海洋生物贻贝的启发,利用多巴胺(DA)自聚合作用将氧化石墨烯自组装成三维(3D)石墨烯材料,并对亚甲基蓝(MB)的吸附行为进行研究.结果显示,3D石墨烯材料具有多孔网络结构,孔径约为0.5 μm到几十μm,对MB具有良好的吸附性能,最大吸附量为752 mg·g-1,对MB分子是单分子层吸附,吸附行为符合Langmuir等温吸附和准二级反应动力学方程.通过颗粒内扩散模型对其吸附的扩散机理进行研究,发现吸附初期为外表面扩散吸附,后期为孔道缓慢扩散过程.3D石墨烯对MB吸附具有较好的可再生能力,经过5次的吸附-脱附实验,对MB的去除效率降低20.9%.通过考察其对实际水样中MB的吸附效果,3D石墨烯材料表现出较好的实际应用能力,去除效率均在89%以上.
  • 加载中
  • [1] AWAIS K, MAZHAR H P, MUHAMMAD M, et al. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution[J]. Journal of Cleaner Production, 2015,87:50-57.
    [2] 聂发辉,刘荣荣,张慧敏,等.新型高级氧化技术处理硫化染料废水的研究进展[J]. 化工环保,2015,35(5):492-497.

    NIE F R, LIU R R, ZHANG H M, et al. Research progresses in treatment of sulfur dyes wastewater by new advanced oxidation technologies[J]. Environmental Protection of Chemical Industry, 2015, 35(5):492-497(in Chinese).

    [3] 李大培,刘玉春,华鹏,等.木质素基聚合物的制备及亚甲基蓝的吸附[J]. 化工环保,2016,32(2):173-178.

    LI D P, LIU Y C, HUA P, et al. Preparation of lignin-based polymer and adsorption of methylene blue[J]. Environmental Protection of Chemical Industry,2016, 32(2):173-178(in Chinese).

    [4] ABDELMJID B, MAJDA B, BRAHIM A, et al. Removal of dyes by a new nano-TiO2 ultrafiltration membrane deposited on low-cost support prepared from natural Moroccan bentonite[J]. Applied Clay Science, 2017, 149:127-135.
    [5] 李庭,周成显怡,谢通慧,等. 4种触须式强碱性阴离子交换树脂的制备及其对曙红Y的吸附性能[J]. 化工进展,2015,34(5):1377-1388.

    LI T, ZHOU C X Y, XIE T H, et al. Preparation of four tentacle-type strong base anion exchange resins andstudy ontheir adsorption properties for Eosin Y removal[J]. Chemical Industry and Engineering Progress, 2015, 34(5):1377-1388(in Chinese).

    [6] 徐云兰,李珏秀,钟登杰,等. 双极液膜法可见光光催化降解染料废水[J]. 中国环境科学,2014,34(6):1463-1470.

    XU Y L, Li Y X, Zhong D J, et al. Dual electrodes photocatalytic degradation of dye wastewater under visible light irradiation[J]. China Environmental Science, 2014, 34(6):1463-1470(in Chinese).

    [7] LI X H, JIN X D, ZHAO N N, et al. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell[J]. Bioresource Technology, 2017, 228:322-329.
    [8] 张聪璐,胡筱敏,赵研,等.磁性壳聚糖衍生物对阴离子染料的吸附行为[J]. 环境科学,2015,36(1):221-226.

    ZHANG C L, HU X M, ZHAO Y, et al. Adsorption behavior of anionic dyes onto magnetic chitosan derivatives[J]. Environmental Science, 2015, 36(1):221-226(in Chinese).

    [9] MA C F,GAO Q, XIA K S, et al. Three-dimensionally porous graphene:A high-performance adsorbent for removal of albumin-bonded bilirubin[J]. Colloids and Surfaces B:Biointerfaces, 2017, 149:146-153.
    [10] QU Z, FANG L, CHEN D Y, et al. Effective and regenerable Ag/graphene adsorbent for Hg(Ⅱ) removal from aqueous solution[J]. Fuel, 2017, 203:128-134.
    [11] LIU Q, SHI J B, ZENG L X, et al. Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes[J]. Journal of Chromatography A, 2010, 1218(2):197-204.
    [12] ZHANG L Y, ZHANG W L, ZHOU Z Q, et al. γ-Fe2O3 nanocrystals-anchored macro/meso-porous graphene as a highly efficient adsorbent toward removal of methylene blue[J]. Journal of Colloid and Interface Science, 2016, 476:200-205.
    [13] SAMIEE S, GOHARSHADI E K. Graphene nanosheets as efficient adsorbent for an azo dye removal:Kinetic and thermodynamic studies[J]. Journal of Nanoparticle Research, 2014, 16(8):2542-2557.
    [14] SONG X H, LIN L P, RONG M C, et al. Mussel-inspired, ultralight, multifunctional 3d nitrogen-doped graphene aerogel[J]. Carbon, 2014, 80:174-182.
    [15] CHENG C, DENG J, LEI B, et al. Toward 3d graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers[J]. Journal of Hazardous Materials, 2013, 263:467-478.
    [16] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9):1361-1403.
    [17] CUI L M, WANG Y G, HU L H, et al. Mechanism of Pb(Ⅱ) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide[J]. RSC Advances, 2015, 5(3):9759-9770.
    [18] SHI H C, LI W S, ZHONG L, et al. Methylene blue adsorption from aqueous solution by magnetic cellulose/graphene oxide composite:equilibrium, kinetics, and thermodynamics[J]. Industrial & Engineering Chemistry Research, 2014, 53(3):1108-1118.
    [19] JIN L N, ZHAO X S, QIAN X Y, et al. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes[J]. Journal of Colloid and Interface Science, 2018, 509:245-253.
    [20] CHEN Y Q, CHEN L B, BAIH, et al. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J]. Journal of Materials Chemistry A, 2013, 1(6):1992-2001.
    [21] WANG W, JIAO T F, ZHANG Q R, et al. Hydrothermal synthesis of hierarchical core-shell manganese oxide nanocomposites as efficient dye adsorbents for wastewater treatment[J]. RSC Advances, 2015, 5(69):56279-56285.
    [22] GUO H Y, JIAO T F, ZHANG Q R, et al. Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment[J]. Nanoscale Research Letters, 2015, 10(1):272-281.
    [23] 常青,江国栋,胡梦璇,等.石墨烯基磁性复合材料吸附水中亚甲基蓝的研究[J]. 环境科学,2014, 35(5):1804-1809.

    CHANG Q, JIANG G D, HU M X, et al. Adsorption of methylene blue from aqueous solution onto magnetic Fe3O4/graphene oxide nanoparticles[J]. Environmental Science, 2014, 35(5):1804-1809(in Chinese).

    [24]
    [25] 吴艳,罗汉金,王侯,等. 改性石墨烯对水中亚甲基蓝的吸附性能研究[J]. 环境科学,2013,34(11):4333-4340.

    WU Y, LUO H J, WANG H, et al. Adsorption properties of modified graphene for methylene blue removal fromwastewater[J]. Environmental Science, 2013, 34(11):4333-4340(in Chinese).

    [26] 徐恩兵,李坤权,朱志强,等. 双孔介孔碳的合成及其对亚甲基蓝的吸附[J]. 环境化学,2015,34(1):137-143.

    XU E B, LI K Q, ZHU Z Q, et al. Synthesis of mesoporous carbon with dual-pore structure and their adsorption of methylene blue[J]. Environmental Chemistry, 2015, 34(1):137-143(in Chinese).

    [27] YANG M L, LIU X L, QI Y C, et al. Preparation of κ-carrageenan/graphene oxide gel beads and their efficient adsorption for methylene blue[J]. Journal of Colloid And Interface Science, 2017, 506:669-677.
    [28] GUI C X, WANG Q Q, HAO S M, et al. Sandwichlike magnesium silicate/reduced graphene oxide nanocomposite for enhanced Pb2+ and methylene blue adsorption[J]. ACS Applied Materials & Interfaces, 2014, 6(16):14653-14659.
    [29] LIU C Y, LIU H Y, XU A R, et al. In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal[J]. Journal of Alloys and Compounds, 2017, 714:522-529.
    [30] THEYDAN S K,AHMED M J. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation:Equilibrium, kinetics, and thermodynamic studies[J]. Journal of Analytical and Applied Pyrolysis, 2012, 97(5):116-122.
  • 加载中
计量
  • 文章访问数:  1063
  • HTML全文浏览数:  1042
  • PDF下载数:  59
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-01-11
  • 刊出日期:  2018-11-15
刘怡虹, 周廷尧, 胡蓉, 许德超, 彭盛华, 尹魁浩. 贻贝仿生三维石墨烯制备及对亚甲基蓝的吸附[J]. 环境化学, 2018, 37(11): 2540-2547. doi: 10.7524/j.issn.0254-6108.2018011101
引用本文: 刘怡虹, 周廷尧, 胡蓉, 许德超, 彭盛华, 尹魁浩. 贻贝仿生三维石墨烯制备及对亚甲基蓝的吸附[J]. 环境化学, 2018, 37(11): 2540-2547. doi: 10.7524/j.issn.0254-6108.2018011101
LIU Yihong, ZHOU Tingyao, HU Rong, XU Dechao, PENG Shenghua, YIN Kuihao. Synthesis of mussel-inspired three-dimensional graphene materials and their application in methylene blue adsorption[J]. Environmental Chemistry, 2018, 37(11): 2540-2547. doi: 10.7524/j.issn.0254-6108.2018011101
Citation: LIU Yihong, ZHOU Tingyao, HU Rong, XU Dechao, PENG Shenghua, YIN Kuihao. Synthesis of mussel-inspired three-dimensional graphene materials and their application in methylene blue adsorption[J]. Environmental Chemistry, 2018, 37(11): 2540-2547. doi: 10.7524/j.issn.0254-6108.2018011101

贻贝仿生三维石墨烯制备及对亚甲基蓝的吸附

  • 1.  国家环境保护饮用水水源地管理技术重点实验室, 深圳市饮用水水源地安全保障重点实验室, 深圳市水环境中新型污染物检测与控制重点实验室, 深圳市环境科学研究院, 深圳, 518001;
  • 2.  华南理工大学化学与化工学院, 广州, 510640
基金项目:

深圳市科技计划基础研究项目(JCYJ20150730155600636)资助.

摘要: 受海洋生物贻贝的启发,利用多巴胺(DA)自聚合作用将氧化石墨烯自组装成三维(3D)石墨烯材料,并对亚甲基蓝(MB)的吸附行为进行研究.结果显示,3D石墨烯材料具有多孔网络结构,孔径约为0.5 μm到几十μm,对MB具有良好的吸附性能,最大吸附量为752 mg·g-1,对MB分子是单分子层吸附,吸附行为符合Langmuir等温吸附和准二级反应动力学方程.通过颗粒内扩散模型对其吸附的扩散机理进行研究,发现吸附初期为外表面扩散吸附,后期为孔道缓慢扩散过程.3D石墨烯对MB吸附具有较好的可再生能力,经过5次的吸附-脱附实验,对MB的去除效率降低20.9%.通过考察其对实际水样中MB的吸附效果,3D石墨烯材料表现出较好的实际应用能力,去除效率均在89%以上.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回