新型颗粒电极γ-Al2O3@MIL-101(Fe)对水中罗丹明B的电催化氧化
Electrocatalytic oxidation of Rhodamine B on a novel particle electrode of γ-Al2O3@MIL-101(Fe)
-
摘要: 以γ-Al2O3为基体,采用水热合成的方法制备新型的颗粒电极γ-Al2O3@MIL-101(Fe),通过XRD、FT-IR、SEM、EDS等方法对颗粒电极进行性质表征.以Ti极板作为阴极,Ti-RuO2作为阳极,采用三维电催化氧化体系处理罗丹明B (RhB)模拟废水.以无水硫酸钠为支持电解质,对各影响因素进行了优化实验研究,同时对颗粒电极电催化降解罗丹明B的反应进行了动力学模拟分析,并进行颗粒电极的重复利用实验,以探究制备的新型颗粒电极γ-Al2O3@MIL-101(Fe)对水中罗丹明B的电催化氧化性能.实验结果表明制备的新型颗粒电极γ-Al2O3@MIL-101(Fe)对罗丹明B的电催化降解反应属于一级动力学反应,反应速率常数k为30.1×10-2 min-1,是传统颗粒电极γ-Al2O3的15倍;在颗粒电极投加量为33.3 g·L-1、电压20 V、电解质浓度8 g·L-1、pH 2时,25 min后罗丹明B的去除率高达97%;同样条件下,γ-Al2O3电催化处理染料水时,1 h后罗丹明B的降解率仅为56%;新型颗粒电极γ-Al2O3@MIL-101(Fe)在电催化氧化罗丹明B的反应中具有良好的重复利用性能,经过5次反复利用,其去除率仍能保持在85%左右.
-
关键词:
- 颗粒电极 /
- 电催化氧化 /
- 罗丹明B /
- γ-Al2O3@MIL-101(Fe) /
- 印染废水
Abstract: A novel particle-electrode of γ-Al2O3@MIL-101(Fe) was prepared by hydrothermal method based on the carrier of γ-Al2O3. The properties of the particle-electrode γ-Al2O3@MIL-101(Fe) were characterized by XRD, FT-IR, SEM and EDS. Using Ti electrode and Ti/RuO2 electrode as the negative and positive electrode respectively, the simulated Rhodamine B (RhB) wastewater was treated in a three-dimensional electrocatalytic system. Optimization of experimental parameter was carried out and the kinetic of RhB degradation was investigated. The reuse test on the degradation of RhB was also performed. The results showed that the electrocatalytic degradation of RhB under the optimized conditions could be fitted with pseudo-first-order kinetic model, and the observed rate constant (kobs) of the three-dimensional electrocatalytic system with a particle electrode γ-Al2O3@MIL-101(Fe) (30.1×10-2 min-1) was about 15 times higher than that of the system with traditional particle electrode γ-Al2O3.The RhB removal rate in the novel system reached 97% in 25 min under the optimum condition of the particle electrodes dosage of 33.3 g·L-1, cell voltage of 20 V,electrolyte concentration of 8 g·L-1 and pH of 2. Correspondingly, the RhB removal rate in the traditional system only reached 56% in 60 min under the same condition. The novel particle electrode of γ-Al2O3@MIL-101(Fe) displayed good reusability for the removal of RhB, and the removal rate of RhB in the reaction system remained about 85% after five cycles. -
-
[1] MOTAHARI F, MOZDIANFARD M R, SALAVATI-NIASARI M. Synthesis and adsorption studies of NiO nanoparticles in the presence of H2 acacen ligand for removing Rhodamine B in wastewater treatment[J]. Process Safety and Environmental Protection,2015,93(1):282-292. [2] AN A K, GUO J X, JEONG S,et al. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation[J]. Water Research, 2016, 103:362-371. [3] 缪虹,孙亚兵,冯景伟,等. Fe掺杂PTFE-PbO2/TiO2-NTs/Ti电极的制备、表征及电催化性能[J].环境化学,2012,31(6):837-841. LIAO H,SUN Y B,FENG J W,et al. Preparation,characterization and electro-catalytic properties of Fe doped PTFE-PbO2/TiO2-NTs/Ti[J]. Environmental Chemistry,2012,31(6):837-841(in Chinese).
[4] AHMED M A, ABOU-GAMRA Z M, MEDIEN H,et al. Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photo degradation[J]. Journal of Photochemistry& Photobiology, B:Biology,2017,176:25-35. [5] SUN Y J, LI P, ZHENG H L,et al. Electrochemical treatment of chloramphenicol using Ti-Sn/γ-Al2O3 particle electrodes with a three-dimensional reactor[J]. Chemical Engineering Journal,2017,308:1233-1242. [6] LEE J Y, FARHA O K, ROBERTS J,et al. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews, 2009, 38(5):1450-1459. [7] SEN R, SAHA D,KONER S. Controlled construction of metal-organic frameworks:Hydrothermal synthesis, X-ray structure, and heterogeneous catalytic study[J]. Chemistry-A European Journal,2012,18,5979-5986. [8] ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J].Chemical Reviews, 2012, 112(2):673-674. [9] LI X H,GUO W L,LIU Z H,et al. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation[J]. Applied Surface Science,2016,369:130-136. [10] RASHAD M M, IBRAHIM A A, RAYAN D A,et al. Photo-Fenton-like degradation of Rhodamine B dye from waste water using iron molybdate catalyst under visible light irradiation[J]. Environmental Nanotechnology, Monitoring & Management,2017,8:175-186. [11] HORIUCHI Y, TOYAO T, MIYAHARA K,et al. Visible-light-driven photocatalytic water oxidation catalysed by iron-based metal-organic frameworks[J]. Chemical Communications,2016, 52(29):5190-5193. [12] 郭庆梅,沈智奇,凌凤香,等.高指数表面晶面纳米γ-Al2O3的合成及表征[J].当代化工, 2015,44(5):951-954. GUO Q M,SHEN Z Q,LING F X,et al. Synthesis and characterization of nanosized γ-Al2O3 with high index surface planes[J].Contemporary Chemical Industry, 2015(5):951-954(in Chinese).
[13] CHI L, XU Q, LIANG X Y,et al. Iron-based metal-organic frameworks as catalysts for visible light-driven water oxidation[J].Small 2016,12,(10):1351-1358. [14] SKOBELEV I Y, SOROKIN A B, KOVALENKO K A,et al. Solvent-free allylic oxidation of alkenes with O2 mediated by Fe-and Cr-MIL-101[J]. Journal of Catalysis,2013,298:61-69. [15] WU W, HUANG Z H, LIM T T. A comparative study on electrochemical oxidation of bisphenol A by boron-doped diamond anode and modified SnO2-Sb anodes:influencing parameters and reaction pathways[J]. Journal of Environmental Chemical Engineering, 2016, 4(3):2807-2815. [16] AN H, CUI H, ZHANG W Y, et al. Fabrication and electrochemical treatment appilication of microstructured TiO2-NTs/Sb-SnO2/PbO2 anode in the degradation of C.I. Reactive Blue 194(RB 194)[J]. Chemical Engineering Journal,2012,209(20):86-93. [17] YANG C, CHENG J H, CHEN Y C, et al. Enhanced adsorption performance of MoS2 nanosheet-coated MIL-101 hybrids for the removal of aqueous rhodamine B[J]. Journal of Colloid and Interface Science,2017,504:39-47. [18] 沈文浩,刘天龙,李翠翠,等. TiO2胶体光催化降解罗丹明B染料[J]. 环境工程学报, 2012, 6(6):1863-1870. SHEN W H,LIU T L,LI C C,et al. Photocatalytic degradation of dye rhodamine B by nanosized TiO2 colloids[J]. Chinese Journal of Environmental Engineering, 2012, 6(6):1863-1870(in Chinese).
[19] SABOORI A. A nanoparticle sorbent composed of MIL-101(Fe) and dithiocarbamate-modified magnetite nanoparticles for speciation of Cr(Ⅲ) and Cr(Ⅵ) prior to their determination by electrothermal AAS[J]. Microchimica Acta,2017,184:1509-1516. [20] ZHANG Z G, LI X Y, LIU B J, et al. Hexagonal microspindle of NH2-MIL-101(Fe) metal-organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene[J]. Rsc Advances,2015, 6(6):4289-4295. [21] 尹红霞,康天放,张雁,等.电化学催化氧化法降解水中甲基橙的研究[J]. 环境科学与技术, 2008, 31(2):88-91. YIN H X,KANG T F,ZHANG Y,et al. Experimental study on degradation of methyl orange in aqueous solution by electro-catalytic oxidation[J].Environmental Science & Technology, 2008, 31(2):88-91(in Chinese).
[22] WANG Z Y, QI J Y, FENG Y, et al. Preparation of catalytic particle electrodes from steel slag and its performance in a three-dimensional electrochemical oxidation system[J]. Journal of Industrial and Engineering Chemistry,2014,20:3672-3677. [23] HE E Y, MA Q L,WANG J, et al. Preparation of novel kaolin-based particle electrodes for treating methyl orange wastewater[J]. Applied Clay Science,2014,99:178-186. -

计量
- 文章访问数: 1206
- HTML全文浏览数: 1185
- PDF下载数: 63
- 施引文献: 0