2017年春节前后乌鲁木齐市大气颗粒物中多环芳烃的污染特征、来源分析及健康风险评价
Characteristics, sources apportionment and toxicity assessment of polycyclic aromatic hydrocarbons in atmospheric particulate matters 2017 Chinese New Year in Urumqi
-
摘要: 在乌鲁木齐生活区春节前后采集大气PM10和PM2.5样品,采用高效液相色谱法(HPLC)进行16种优控多环芳烃(PAHs)质量浓度及组成特征分析,运用特征比值法和毒性当量浓度及终身致癌超额危险度分别进行了来源分析和毒性评价.结果表明,在采样期间乌鲁木齐市生活区大气PM10和PM2.5浓度分别超过了国家二级标准77%和85%,并春季期间平均浓度比除夕前高.PM10和PM2.5中PAHs的浓度分别介于65.98-253.54 ng·m-3、37.68-245.24 ng·m-3之间,PAHs主要以中高环为主,占∑16PAHs的88%.春节期间随着颗粒物浓度的增高,其中PAHs的含量也增高,5-6环PAHs的贡献率减少,3-4环的贡献率增高.来源解析表明,乌鲁木齐大气中PAHs是以燃煤和机动车尾气混合型为主要来源,春节前机动车尾气对PAHs的贡献率大,春节期间机动车的贡献率减少.毒性评价结果表明,乌鲁木齐市冬季样品中∑16PAHs的BaPeq浓度范围为0.0004-10.94 ng·m-3,BaP和DbA的毒性最强,对∑BaPeq的贡献率占70%以上;PM10和PM2.5中∑16PAHs的总ECR分别为2.03×10-3和1.68×10-3,超过国家最大可以接受水平.Abstract: PM10 and PM2.5 samples were collected from the residential area of Urumqi around the Chinese New Year (CNY), and the mass concentrations, composition characteristics of 16 priority PAHs were analyzed by high performance liquid chromatography (HPLC). Source analysis were performed using the characteristic ratio method, and toxicity was evaluated by the BaPeq and ECR. The results showed that during the sampling period, the concentrations of PM10 and PM2.5 in the residential area of Urumqi exceeded the national secondary standards by 77% and 85%, respectively. The average concentrations during the CNY were higher than before the CNY Eve. The concentrations of PAHs in PM10 and PM2.5 were between 65.98-253.54 ng·m-3 and 37.68-245.24 ng·m-3, ∑16 PAHs was mainly dominated by middle and high molecular ring PAHs which accounted for 88% of the total PAHs. During the CNY, as the particle concentrations increased, the concentrations of PAHs also increased. Moreover, contribution of 5-6 ring PAHs decreased, while the 3-4 ring PAHs contributions increased. The source analysis showed that the main sources of PAHs in Urumqi included coal combustion and motor vehicle exhaust. The contribution rate of motor vehicle exhaust to PAHs was higher than coal combustion before the CNY and decreased during the CNY. The toxicity evaluation results showed that BaPeq concentration was in the range of 0.0004-10.94 ng·m-3. BaP and DbA were the most toxic PAHs congeners, contributing more than 70% to ∑BaPeq. The total ECR of ∑16PAHs in PM10 and PM2.5 were 2.03×10-3 and 1.68×10-3, respectively, which exceeded the national maximum acceptable level.
-
Key words:
- PAHs /
- Chinese New Year /
- source analysis /
- toxicity assessment /
- PM10 and PM2.5 /
- Urumqi
-
-
[1] SHEN G, WANG W, YANG Y, et al. Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural Northern China[J]. Atmospheric Environment, 2010, 44(39):5237-5243. [2] LAMMEL G, SEHILI A M, BOND T C, et al. Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbonsA modelling approach[J]. Chemosphere, 2009, 76(1):98-106. [3] 麦麦提·斯马义, 帕丽达·牙合甫, 努尔比亚·藿加吾买尔. 乌鲁木齐市周边地区土壤中多环芳烃的含量及来源[J]. 土壤, 2016, 48(6):1166-1171. MAIMAITI·Simayi, PALIDA·Yahefu, NUERBIYA·Houjiawumaier. Contents and sources of polycyclic aromatic hydrocarbons in soils around Urumqi City[J]. Soil, 2016, 48(6):1166-1171(in Chinese).
[4] YIN H, MU S, ZHAO L, et al. Microscopic morphology and elemental composition of size distributed atmospheric particulate matter in Urumqi, China[J]. Environmental Earth Sciences, 2013, 69(7):2139-2150. [5] 帕丽达·牙合甫, 努尔比亚·藿加吾买尔, 麦麦提·斯马义. 乌鲁木齐采暖期TSP、PM10、PM5、PM2.5中重金属污染水平评价[J]. 中国环境监测, 2016, 32(5):56-59. PALIDA·Yahefu, NUERBIYA·Houjiawumaier, MAIMAITI·Simayi. Evaluation on heavy metal pollution levels in TSP, PM10, PM5, PM2.5 during Heating Period of Urumqi[J]. Environmental Monitoring in China, 2016, 32(5):56-59(in Chinese).
[6] KONG S, LI X, LI L, et al. Variation of polycyclic aromatic hydrocarbons in atmospheric PM2.5 during winter haze period around 2014 Chinese Spring Festival at Nanjing:Insights of source changes, air mass direction and firework particle injection[J]. Science of the Total Environment, 2015, 520:59-72. [7] LI X, GUO X, LIU X, et al. Distribution and sources of solvent extractable organic compounds in PM2.5 during 2007 Chinese Spring Festival in Beijing[J]. Journal of Environmental Sciences, 2009, 21(2):142-149. [8] WU Y, YANG L, ZHENG X, et al. Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing[J]. Science of the Total Environment, 2014, 470-471(2):76-83. [9] KONG S, DING X, BAI Z, et al. A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in five typical cities of Liaoning Province, China[J]. Journal of Hazardous Materials, 2010, 183(1):70-80. [10] 周变红, 张承中, 王格慧. 春节期间西安城区碳气溶胶污染特征研究[J]. 环境科学, 2013, 34(2):448-454. ZHOU B H, ZHANG C Z, WANG G H. Study on Pollution characteristics of carbonaceous aerosols in Xi'an City During the Spring Festival[J]. Environmental Sciences, 2013, 34(2):448-454(in Chinese).
[11] 李杏茹, 郭雪清, 刘欣然, 等. 2007年春节期间北京大气颗粒物中多环芳烃的污染特征[J]. 环境科学, 2008, 29(8):2099-2104. LI X R, GUO X Q, LIU X R, et al. Pollution characteristic of PAHs in atmospheric particles during the spring festival of 2007 in Beijing[J]. Environmental Sciences, 2008, 29(8):2099-2104(in Chinese).
[12] 李军, 孙春宝, 刘咸德, 等. 气象因素对北京市大气颗粒物浓度影响的非参数分析[J]. 环境科学研究, 2009, 22(6):663-669. LI J, SUN C B, LIU X D, et al. Non-parameter statistical analysis of impacts of meteorological conditions on PM concentration in Beijing[J]. Research of Envirnnmental Sniences, 2009, 22(6):663-669(in Chinese).
[13] 杨丽莉, 王美飞, 张予燕, 等. 南京市大气颗粒物中多环芳烃变化特征[J]. 中国环境监测, 2016, 32(1):53-57. YANG L L, WANG M F, ZHANG Y Y, et al. Distribution variation characteristics of polycyclic aromatic ydrocarbons (PAHs) in airborne particles of Nanjing[J]. Environmental Monitoring in China, 2016, 32(1):53-57(in Chinese).
[14] 张蕾, 姬亚芹, 赵静波, 等. 鞍山市冬季大气PM2.5中多环芳烃的来源解析及毒性评价[J]. 环境化学, 2017, 36(12):2668-2675. ZHANG L, JI Y Q, ZHAO J B, et al. Sources apportionment and toxicity assessment of polycyclic aromatic hydrocarbons in PM2.5 of Anshan City in winter[J]. Environmental Chemistry, 2017, 36(12):2668-2675(in Chinese).
[15] 焦海涛, 孙湛, 刘仲, 等. 济南市社区大气PM2.5中多环芳烃的污染特征及健康风险评价[J]. 环境与健康杂志, 2016, 33(5):425-428. JIAO H T, SUN Z, LIU Z, et al. Pollution characterization and health risk assessment of PAHs in PM2.5 in Ji'nan[J]. J Environ Health, 2016, 33(5):425-428(in Chinese).
[16] 李英红, 饶志国, 谭吉华, 等. 兰州大气细颗粒物中多环芳烃污染特征及来源分析[J]. 环境科学, 2016, 37(7):2428-2435. LI Y H, RAO Z G, TAN J H, et al. Pollutional characteristics and sources analysis of polycyclic aromatic hydrocarbons in atmospheric fine particulate matter in Lanzhou City[J]. Environmental Sciences, 2016, 37(7):2428-2435(in Chinese).
[17] 段二红, 张微微, 李璇, 等. 石家庄市采暖期大气细颗粒物中PAHs污染特征[J]. 环境科学研究, 2017, 30(2):193-201. DUAN E H, ZHANG W W, LI X, et al. Characteristics of PAHs in fine atmospheric particulate matter in Shijiazhuang City in heating season[J]. Research of Envirnnmental Sniences,2017, 30(2):193-201(in Chinese).
[18] 陈刚, 周潇雨, 吴建会, 等. 成都市冬季PM2.5中多环芳烃的源解析与毒性源解析[J]. 中国环境科学, 2015, 35(10):3150-3156. CHEN G, ZHOU X Y, WU J H, et al. Source apportionment and toxicity quantitation of PM2.5-associated polycyclic aromatic hydrocarbons obtained from Chengdu, China[J]. China Environmental Science, 2015, 35(10):3150-3156(in Chinese).
[19] 周海军, 杜远江, 都达古拉, 等. 呼和浩特市冬季PM10中多环芳烃的污染特征及来源解析[J]. 环境化学, 2016, 35(8):1707-1714. ZHOU H J, DU YJ, DUDAGULA, et al. Characterization and source apportionment of Polycyclic aromatic hydrocarbons bound to PM2.5 during winter in Hohhot[J]. Environmental Chemistry, 2016, 35(8):1707-1714(in Chinese).
[20] MA W L, SUN D Z, SHEN W G, et al. Atmospheric concentrations, sources and gas-particle partitioning of PAHs in Beijing after the 29th Olympic Games[J]. Environmental Pollution, 2011, 159(7):1794-1801. [21] 董群, 赵普生, 陈一娜. 降雨对不同粒径气溶胶粒子碰撞清除能力[J]. 环境科学, 2016, 37(10):3686-3692. DONG Q, ZHAO P S, CHEN Y N. Impact of collision removal of rainfall on aerosol particles of different sizes[J]. Environmental Sciences, 2016, 37(10):3686-3692(in Chinese).
[22] SOSA B S, PORTA A, LERNER J E C, et al. Human health risk due to variations in PM10-PM2.5 and associated PAHs levels[J]. Atmospheric Environment, 2017, 160:27-35. [23] 谢鸣捷, 王格慧, 胡淑圆, 等. 南京夏秋季大气颗粒物和PAHs组成的粒径分布特征[J]. 中国环境科学, 2008, 28(10):867-871. XIE M J, WANG G H, HU S Y, et al. Size distributions of particulate matter and PAHs from Naming in summer and autumn[J]. China Environmental Science, 2008, 28(10):867-871(in Chinese).
[24] WU D, WANG Z, CHEN J, et al. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city:Implication for PAH control at industrial agglomeration regions, China[J]. Atmospheric Research, 2014, 149(1):217-229. [25] WANG G, KAWAMURA K, XIE M, et al. Size-distributions of n-hydrocarbons, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia[J]. Atmospheric Chemistry & Physics Discussions, 2009, 9(3):8869-8882. [26] BOUROTTE C, FORTI M C, TANIGUCHI S, et al. A wintertime study of PAHs in fine and coarse aerosols in São Paulo city, Brazil[J]. Atmospheric Environment, 2005, 39(21):3799-3811. [27] KATSOYIANNIS A, BREIVIK K. Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool[J]. Environmental Pollution, 2014, 184(1):488-494. [28] DVORSKA A, LAMMEL G, KLANOVA J. Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe[J]. Atmospheric Environment, 2011, 45(2):420-427. [29] YUNKER M B, MACDONALD R W, VINGARZAN R, et al. PAHs in the Fraser River basin:A critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4):489-515. [30] PARK S U, KIM J G, JEONG M J, et al. Source identification of atmospheric polycyclic aromatic hydrocarbons in industrial complex using diagnostic ratios and multivariate factor analysis[J]. Archives of environmental contamination and toxicology, 2011, 60(4):576-589. [31] MANTIS J, CHALOULAKOU A, SAMARA C. PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the Greater Area of Athens, Greece[J]. Chemosphere, 2005, 59(5):593-604. [32] SHI J, PENG Y, LI W, et al. Characterization and source identification of PM10-bound polycyclic aromatic hydrocarbons in urban Air of Tianjin, China[J]. Aerosol & Air Quality Research, 2010, 10(5):507-518. [33] WANG G, HUANG L, ZHAO X, et al. Aliphatic and polycyclic aromatic hydrocarbons of atmospheric aerosols in five locations of Nanjing urban area, China[J]. Atmospheric Research, 2006, 81(1):54-66. [34] HOU X, ZHUANG G, SUN Y, et al. Characteristics and sources of polycyclic aromatic hydrocarbons and fatty acids in PM2.5 aerosols in dust season in China[J]. Atmospheric Environment, 2006, 40(18):3251-3262. [35] 张承中, 陈静, 刘立忠, 等. 西安市大气中多环芳烃的季节变化及健康风险评价[J]. 环境工程学报, 2012, 6(12):4579-4584. ZHANG C Z, CHEN J, LIU L Z, et al. Seasonal variation and health risk assessment of polycyclic aromatic hydrocarbons in air of Xi'an[J]. Chinese Journal of Environmental Engineering. 2012, 6(12):4579-4584(in Chinese).
[36] 中国环境科学研究院. 环境空气质量标准[M].北京:中国环境科学出版社, 2012. Chinese Research Academy of Environmental Sciences. Ambient air quality standards[M]. Beijing:China Environmental Science Press, 2012(in Chinese). [37] PETRY T, SCHMID P, SCHLATTER C. The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs)[J]. Chemosphere, 1996, 32(4):639-648. [38] NISBET I C T, LAGOY P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs)[J]. Regulatory Toxicology and Pharmacology, 1992, 16(3):290-300. [39] YANG H H, CHEN C M. Emission inventory and sources of polycyclic aromatic hydrocarbons in the atmosphere at a suburban area in Taiwan[J]. Chemosphere, 2004, 56(10):879-887. [40] ZHANG Y, TAO S. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China[J]. Environmental Pollution, 2008, 156(3):657-663. -

计量
- 文章访问数: 1338
- HTML全文浏览数: 1318
- PDF下载数: 71
- 施引文献: 0