北京市5种典型植物滞尘特征及影响因素

程雨萌, 王云琦, 王玉杰, 张会兰, 梁丹. 北京市5种典型植物滞尘特征及影响因素[J]. 环境化学, 2016, 35(8): 1690-1697. doi: 10.7524/j.issn.0254-6108.2016.08.2016010801
引用本文: 程雨萌, 王云琦, 王玉杰, 张会兰, 梁丹. 北京市5种典型植物滞尘特征及影响因素[J]. 环境化学, 2016, 35(8): 1690-1697. doi: 10.7524/j.issn.0254-6108.2016.08.2016010801
CHENG Yumeng, WANG Yunqi, WANG Yujie, ZHANG Huilan, LIANG Dan. Particulate matter adsorption and the main influencing factors of five typical plants in Beijing[J]. Environmental Chemistry, 2016, 35(8): 1690-1697. doi: 10.7524/j.issn.0254-6108.2016.08.2016010801
Citation: CHENG Yumeng, WANG Yunqi, WANG Yujie, ZHANG Huilan, LIANG Dan. Particulate matter adsorption and the main influencing factors of five typical plants in Beijing[J]. Environmental Chemistry, 2016, 35(8): 1690-1697. doi: 10.7524/j.issn.0254-6108.2016.08.2016010801

北京市5种典型植物滞尘特征及影响因素

  • 基金项目:

    国家林业公益性行业科研专项(201304301)资助.

Particulate matter adsorption and the main influencing factors of five typical plants in Beijing

  • Fund Project: Supported by the Forestry Public Welfare Project of China (201304301).
  • 摘要: 采用室内实验法定量比较北京市5种典型植物(大叶黄杨、月季、榆叶梅、紫薇、五叶地锦)叶片滞留颗粒物以及吸附水溶性离子的能力差异,并从叶表面特征分析差异原因.结果表明,不同植物叶片滞留TSP的能力大小顺序为:五叶地锦 > 紫薇 > 榆叶梅 > 月季 > 大叶黄杨.滞留PM5-10的能力大小顺序为:月季 > 榆叶梅 > 紫薇 > 大叶黄杨 > 五叶地锦.滞留PM5的能力大小顺序为:大叶黄杨 > 月季 > 紫薇 > 榆叶梅 > 五叶地锦.利用离子色谱法等测定颗粒物的化学组分,其主要组分为:有机碳(34.24%)、无机碳(33.45%)、硅(15.43%)、硫酸盐(14.18%)、氯化物(11.75%)、硝酸盐(1.45%),表现出道路环境特征和二次污染特征.在扫描电镜下观察叶表微观结构,发现叶表面有沟槽的五叶地锦和紫薇的滞尘能力较强,叶表气孔密度大的大叶黄杨阻滞细颗粒物能力较强,这从一定程度解释了不同植物阻滞颗粒物能力差异的主要原因.在研究期间内,5种植物叶片上的颗粒物滞留量呈增加趋势.降雨对叶面TSP冲刷作用明显,对PM5-10和PM5的影响较小.
  • 加载中
  • [1] 陈仁杰, 陈秉衡, 阚海东. 我国113个城市大气颗粒物污染的健康经济学评价[J]. 中国环境科学, 2010, 30(3):410-415.

    CHEN R J, CHEN B H, KAN H D. A health-based economic assessment of particulate air pollution in 113 Chinese cities[J]. China Environmental Science, 2010, 30(3):410-415(in Chinese).

    [2] HINDS W C. Aerosol technology:Properties, behavior, and measurement of airborne particles[M]. John Wiley & Sons, 2012.
    [3] HUEGLIN C, GEHRIG R, BALTENSPERGER U, et al. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland[J]. Atmospheric Environment, 2005, 39(4):637-651.
    [4] 董婷, 李天昕, 赵秀阁, 等. 某焦化厂周边大气PM10重金属来源及健康风险评价[J]. 环境科学, 2014, 35(4):1228-1244.

    DONG T, LI T X, ZHAO X G, et al. Source and health risk assessment of heavy metals in ambient air PM10 from one coking plant[J]. Environmental Science, 2014, 35(4):1238-1244(in Chinese).

    [5] 王秦, 陈曦, 何公理, 等. 北京市城区冬季雾霾天气PM2.5中元素特征研究[J]. 光谱学与光谱析, 2013, 33(6):1441-1445.

    WANG Q, CHEN X, HE G L, et al. Study on characteristics of elements in PM2.5 during haze-fog weather in winter in urban Beijing[J]. Spectroscopy and Spectral Analysis, 2013, 33(6):1441-1445(in Chinese).

    [6] 杨仪方, 钱枫, 张慧峰, 等. 北京市交通干线周围可吸入大气颗粒物的污染特性[J]. 中国环境科学, 2010, 30(7):962-966.

    YANG Y F, QIAN F, ZHANG H F, et al. Characteristics and source apportionment of PM10 at urban traffic trunk roads and surrounding areas in Beijing[J]. China Environmental Science, 2010, 30(7):962-966(in Chinese).

    [7] OTTELE M, van BOHEMEN H D, FRAAIJ A L A, et al. Quantifying the deposition of particulate matter on climber vegetation on living walls[J]. Ecological Engineering, 2010, 36(2):154-162.
    [8] BECKETT K P, FREER SMITH P H, et al. Effective tree species for local air quality management[J]. Journal of Arboriculture, 2000, 26(1):12-19.
    [9] NOWAK D J, HIRABAYASHI S, BODINE A, et al. Modeled PM2.5 removal by trees in ten US cities and associated health effects[J]. Environmental Pollution, 2013, 178:395-402.
    [10] POPEK R, GAWRONSKA H, WROCHNA M, et al. Particulate matter on foliage of 13 woody species:Deposition on surfaces and phytostabilisation in waxes-a 3-year study[J]. International Journal of Phytoremediation, 2013, 15(3):245-256.
    [11] SÆBØ A, POPEK R, NAWROT B. Plant species differences in particulate matter accumulation on leaf surfaces[J]. Science of the Total Environment, 2012, 427:347-354.
    [12] 刘璐, 管东生, 陈永勤, 等. 广州市常见行道植被叶片表面形态与滞尘能力[J]. 生态学报, 2013, 33(8):2604-2614.

    LIU L, GUAN D S, CHEN Y Q, et al. Morphological structure of leaves and dust-retaining capability of common street trees in Guangzhou Municipality[J]. Acta Ecologica Sinica, 2013, 33(8):2604-2614(in Chinese).

    [13] 刘玲, 方炎明, 王顺昌, 等. 7种树木的叶片微形态与空气悬浮颗粒吸附及重金属累积特征[J]. 环境科学, 2013, 34(6):2361-2367.

    LIU L, FANG Y M, WANG S C, et al. Leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals in seven tress species[J]. Environmental Science, 2013, 34(6):2361-2367(in Chinese).

    [14] DZIERZANOWSKI K, POPEK R, GAWRO N H, et al. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species[J]. International Journal of Phytoremediation, 2011, 13(10):1037-1046.
    [15] 王兵, 张维康, 牛香, 等. 北京10个常绿树种颗粒物吸附能力研究[J]. 环境科学, 2015, 36(2):408-414.

    WANG B, ZHANG W K, NIU X, et al. Particulate matter adsorption capacity of 10 evergreen species in Beijing[J]. Environmental Science, 2015, 36(2):408-414(in Chinese).

    [16] SGRIGNA G, SÆBØ A, GAWRONSKI S, et al. Particulate matter deposition on Quercus ilex leaves in an industrial city of central Italy[J]. Environmental Pollution, 2015, 197:187-194.
    [17] 王蕾, 哈斯, 刘连友, 等. 北京市春季天气状况对针叶树叶面颗粒物附着密度的影响[J]. 生态学杂志, 2006, 25(8):998-1002.

    WANG L, HA S, LIU L Y, et al. Effects of weather condition in spring on particulates density on conifers leaves in Beijing[J]. Chinese Journal of Ecology, 2006, 25(8):998-1002(in Chinese).

    [18] 邓利群, 钱骏, 廖瑞雪, 等. 2009年8-9月成都市颗粒物污染及其与气象条件的关系[J]. 中国环境科学, 2012, 32(8):1433-1438.

    DENG L Q, QIAN J, LIAO R X, et al. Pollution characteristics of atmospheric particulates in Chengdu from August to September in 2009 and their relationship with meteorological conditions[J]. China Environmental Science, 2012, 32(8):1433-1438(in Chinese).

    [19] MORI J, SæBØ A, HANSLIN H M, et al. Deposition of traffic-related air pollutants on leaves of six evergreen shrub species during a Mediterranean summer season[J]. Urban Forestry & Urban Greening, 2015, 14(2):264-273.
    [20] LIU L, GUAN D, PEART M R. The morphological structure of leaves and the dust-retaining capability of afforested plants in urban Guangzhou, South China[J]. Environmental Science and Pollution Research, 2012, 19(8):3440-3449.
    [21] SONG Y, MAHER B A, LI F, et al. Particulate matter deposited on leaf of five evergreen species in Beijing, China:Source identification and size distribution[J]. Atmospheric Environment, 2015, 105:53-60.
    [22] 张莉. 南京常见道路绿化树种的环境效益研究[D]. 南京:南京林业大学学位论文, 2007. ZHANG L. Study on environmental effect of common road afforestation trees in Nanjing[D]. Nanjing:Nanjing Forestry University, 2007(in Chinese).
    [23] 余曼, 汪正祥, 雷耘, 等. 武汉市主要绿化树种滞尘效应研究[J]. 环境工程学报, 2009, 3(7):1333-1339.

    YU M, WANG Z X, LEI Y, et al. Study on dust detaining effect of major species of greening trees in Wuhan[J]. Chinese Journal of Environmental Engineering, 3(7):1333-1339(in Chinese).

    [24] 王会霞, 石辉, 李秧秧. 城市绿化植物叶片表面特征对滞尘能力的影响[J]. 应用生态学报, 2010, 21(12):3077-3082.

    WANG H X, SHI H, LI Y Y. Relationships between leaf surface characteristics and dust-capturing capability of urban greening plant species[J]. Chinese Journal of Applied Ecology, 2010, 21(12):3077-3082(in Chinese).

    [25] 陈小平, 焦奕雯, 裴婷婷, 等. 园林植物吸附细颗粒物(PM2.5)效应研究进展[J]. 生态学杂志, 2014, 33(9):2558-2566.

    CHEN X P, JIAO Y W, PEI T T, et al. The effect of adsorbing fine particulate matter (PM2.5) by garden plants:A review[J]. Chinese Journal of Ecology, 2014, 33(9):2558-2566(in Chinese).

    [26] 贾彦, 吴超, 董春芳, 等. 7种绿化植物滞尘的微观测定[J]. 中南大学学报:自然科学版, 2012, 43(11):4547-4553.

    JIA Y, WU C, DONG C F, et al. Measurement on ability of dust removal of seven green plants at micro-conditions[J]. Journal of Central South University (Science and Technology), 2012, 43(11):4547-4553(in Chinese).

    [27] 李海梅, 刘霞. 青岛市城阳区主要园林树种叶片表皮形态与滞尘量的关系[J]. 生态学杂志, 2008, 27(10):1659-1662.

    LI H M, LIU X. Relationships between leaf epidermal morphology and dust-retaining capability of main garden trees in Chengyang District of Qingdao City[J]. Chinese Journal of Ecology, 2008, 27(10):1659-1662(in Chinese).

    [28] 谢滨泽, 王会霞, 杨佳, 等. 北京常见阔叶绿化植物滞留PM2.5能力与叶面微结构的关系[J].西北植物学报, 2014, 34(12):2432-2438.

    XIE B Z, WANG H X, YANG J, et al. Retention capability of PM2.5 and it's explanation by leaf surface micro-structure of common broad-leaved plant species in Beijing[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(12):2432-2438(in Chinese).

    [29] 赵松婷, 李新宇, 李延明. 园林植物滞留不同粒径大气颗粒物的特征及规律[J]. 生态环境学报, 2014, 23(2):271-276.

    ZHAO S T, LI X Y, LI Y M. The characteristics of deposition of airborne particulate matters with different size on certain plants[J]. Ecology and Environmental Sciences, 2014, 23(2):271-276(in Chinese).

    [30] 杨佳, 王会霞, 谢滨泽, 等. 北京9个树种叶片滞尘量及叶面微形态解释[J]. 环境科学研究, 2015, 28(3):384-392.

    YANG J, WANG H X, XIE B Z, et al. Accumulation of particulate matter on leaves of nine urban greening plant species with different micromorphological structures in Beijing[J]. Research of Environmental Sciences, 2015, 28(3):384-392(in Chinese).

  • 加载中
计量
  • 文章访问数:  1612
  • HTML全文浏览数:  1551
  • PDF下载数:  481
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-01-08
  • 刊出日期:  2016-08-15
程雨萌, 王云琦, 王玉杰, 张会兰, 梁丹. 北京市5种典型植物滞尘特征及影响因素[J]. 环境化学, 2016, 35(8): 1690-1697. doi: 10.7524/j.issn.0254-6108.2016.08.2016010801
引用本文: 程雨萌, 王云琦, 王玉杰, 张会兰, 梁丹. 北京市5种典型植物滞尘特征及影响因素[J]. 环境化学, 2016, 35(8): 1690-1697. doi: 10.7524/j.issn.0254-6108.2016.08.2016010801
CHENG Yumeng, WANG Yunqi, WANG Yujie, ZHANG Huilan, LIANG Dan. Particulate matter adsorption and the main influencing factors of five typical plants in Beijing[J]. Environmental Chemistry, 2016, 35(8): 1690-1697. doi: 10.7524/j.issn.0254-6108.2016.08.2016010801
Citation: CHENG Yumeng, WANG Yunqi, WANG Yujie, ZHANG Huilan, LIANG Dan. Particulate matter adsorption and the main influencing factors of five typical plants in Beijing[J]. Environmental Chemistry, 2016, 35(8): 1690-1697. doi: 10.7524/j.issn.0254-6108.2016.08.2016010801

北京市5种典型植物滞尘特征及影响因素

  • 1.  北京林业大学水土保持学院, 北京, 100083;
  • 2.  北京市水土保持工程技术研究中心, 北京, 100083;
  • 3.  北京林业大学水土保持学院重庆缙云山生态站, 重庆, 400702
基金项目:

国家林业公益性行业科研专项(201304301)资助.

摘要: 采用室内实验法定量比较北京市5种典型植物(大叶黄杨、月季、榆叶梅、紫薇、五叶地锦)叶片滞留颗粒物以及吸附水溶性离子的能力差异,并从叶表面特征分析差异原因.结果表明,不同植物叶片滞留TSP的能力大小顺序为:五叶地锦 > 紫薇 > 榆叶梅 > 月季 > 大叶黄杨.滞留PM5-10的能力大小顺序为:月季 > 榆叶梅 > 紫薇 > 大叶黄杨 > 五叶地锦.滞留PM5的能力大小顺序为:大叶黄杨 > 月季 > 紫薇 > 榆叶梅 > 五叶地锦.利用离子色谱法等测定颗粒物的化学组分,其主要组分为:有机碳(34.24%)、无机碳(33.45%)、硅(15.43%)、硫酸盐(14.18%)、氯化物(11.75%)、硝酸盐(1.45%),表现出道路环境特征和二次污染特征.在扫描电镜下观察叶表微观结构,发现叶表面有沟槽的五叶地锦和紫薇的滞尘能力较强,叶表气孔密度大的大叶黄杨阻滞细颗粒物能力较强,这从一定程度解释了不同植物阻滞颗粒物能力差异的主要原因.在研究期间内,5种植物叶片上的颗粒物滞留量呈增加趋势.降雨对叶面TSP冲刷作用明显,对PM5-10和PM5的影响较小.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回