水介质中C60纳米晶体颗粒的扩散状态对其光化学反应活性的影响研究

倪明, 张波, 何义亮, KIM Jaekong, HUGHES Joeseph. 水介质中C60纳米晶体颗粒的扩散状态对其光化学反应活性的影响研究[J]. 环境化学, 2011, 30(9): 1533-1538.
引用本文: 倪明, 张波, 何义亮, KIM Jaekong, HUGHES Joeseph. 水介质中C60纳米晶体颗粒的扩散状态对其光化学反应活性的影响研究[J]. 环境化学, 2011, 30(9): 1533-1538.
NI Ming, ZHANG Bo, HE Yiliang, KIM Jaekong, HUGHES Joeseph. EFFECT OF C60 NANOCRYSTALLINE DISPERSION ON ITS PHOTOCHEMICAL PROPERTIES[J]. Environmental Chemistry, 2011, 30(9): 1533-1538.
Citation: NI Ming, ZHANG Bo, HE Yiliang, KIM Jaekong, HUGHES Joeseph. EFFECT OF C60 NANOCRYSTALLINE DISPERSION ON ITS PHOTOCHEMICAL PROPERTIES[J]. Environmental Chemistry, 2011, 30(9): 1533-1538.

水介质中C60纳米晶体颗粒的扩散状态对其光化学反应活性的影响研究

  • 基金项目:

    国家自然科学学金(No. 20907030)资助项目

    教育部留学回国人员科研启动基金资助项目(2010年第40批)

    上海交通大学"医工(理)交叉研究基金"资助.

EFFECT OF C60 NANOCRYSTALLINE DISPERSION ON ITS PHOTOCHEMICAL PROPERTIES

  • Fund Project:
  • 摘要: 研究了阳离子表面活性剂CTAB,阴离子表面活性剂SDS和非离子表面活性剂TX-100和TX-405对 水介质中C60纳米晶体颗粒的光化学反应活性诱导效应.结果表明,在阳离子表面活性剂CTAB、阴离子表面活性剂SDS和非离子表面活性剂TX-405中,C60纳米晶体颗粒没有显示明显的光化学反应活性,而非离子表面活性剂TX-100能够明显诱导C60的光化学反应活性.紫外-可见吸收光谱、DLS分析和TEM成像都表明,在TX-100溶液中,C60从聚集状态向分子状态转变,尺寸变小,因而恢复其分子态C60的光化学反应活性.
  • 加载中
  • [1] Tagmatarchis N, Shinohara H. Fullerenes in medical chemistry and their biological applications[J]. Mini Reviews in Med Chem, 2001,1: 339-348
    [2] Cravino A, Sariciftci N S. Double-cable polymers for fullerene based organic optoelectronic applications[J]. J Mater Chem, 2002,12: 1931-1943
    [3] Guldi D M, Martín N. Fullerenes: From synthesis to optoelectronic properties[M]. Dordrecht, The netherlands, Kluwer Academic Publisher, 2002
    [4] Ösawa E. Perspectives of fullerene nanotechnology[M]. Berlin, Germany, Springer, 2002
    [5] Heymann D. Solubility of C60 and C70 in seven normal alcohols and their deduced solubility in water[J]. Fullerene Sci Technol, 1996,4: 509-515
    [6] Heymann D. Solubility of C60 and C70 in water[J]. Lunar Planet Sci, 1996, 27: 543-544
    [7] Andrievsky G V, Kosevich M V, Vovk O M, et al. On the production of an aqueous colloidal solution of fullerenes[J]. J Chem Soc Chem Commun, 1995, 12: 1281-1282
    [8] Fortner J D, Lyon D Y, Sayes C M, et al. C60 in water: nanocrystal formation and microbial response[J]. Environ Sci Technol, 2005,39: 4307-4316
    [9] Deguchi S, Mukai S-a, Tsudome M, et al. Facile generation of fullerene nanoparticles by hand-granding[J]. Adv Mater, 2006, 18: 729-732
    [10] Duncan L K, Jinschek J R, Vikesland P J, et al. C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge[J]. Environ Sci Technol, 2008, 42: 173-178
    [11] Hood E. Fullerenes and fish brains: nanomaterials cause oxidative stress[J]. Environ Health Persp, 2004, 112: A568
    [12] Sayes C M, Fortner J D, Guo W, et al. The differential cytotoxicity of water-soluble fullerenes[J]. Nano Letters, 2004, 4(10): 1881-1887
    [13] Lyon D L, Adams L K, Falkner J C, et al. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size[J]. Environ Sci Technol, 2006, 40: 4360-4366
    [14] Oberdörster E, Zhu S. Cotoxicology of carbon-based engineered nanoparticles: Effects of fullerence (C60) on aquatic organisms[J]. Carbon, 2006, 44: 1112-1120
    [15] Oberdörster E, Zhu S Q, Haasch M L, et al. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow[J]. Mar Environ Res, 2006, 62: S5-S9
    [16] Zhu X S, Zhu L, Lang Y P, et al. Developmental toxicity in zebrafish (Danio Rerio) embryos after exposure to manufactured nanomaterials: buchminsterfullerene aggregates (nC60) and fullerol[J]. Envrion Toxicol Chem, 2008, 26: 976-979
    [17] Nakanishi I, Fukuzumi S, Konishi T, et al. DNA cleavage via superoxide anion formed in photoinduced electron transfer from NADH to γ-cyclodextrin-bicapped C60 in an oxygen-saturated aqueous solution[J]. J Phys Chem, 2002, 106: 2372-2380
    [18] Oberdörster E. Manufactured nanomaterials(Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass[J]. Environ. Health Persp, 2004, 112(10): 1058-1062
    [19] Sayes C M, Gobin A M, Ausman K D, et al. Nano-C60 cytotoxicity is due to lipid peroxidation[J]. Biomaterials, 2005, 26: 7587
    [20] Markovic Z, Todorovic-Markovic B, Kleut D, et al. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes[J]. Biomaterials, 2007, 28: 5437-5448
    [21] Abogast J W, Darmanyan A P, Foote C S, et al. Photophysical properties of C60[J]. J Phys Chem-US, 1991, 95: 11-12
    [22] Lee J, Fortner J D, Hughes J B, et al. Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation[J]. Environ Sci Technol, 2007, 41: 2529-2535
    [23] Yamakoshi Y, Sueyoshi S, Fukuhara K, et al.·OH and O2 generation in aqueous C60 and C70 solution by photoirradiation: An EPR study[J]. J Am Chem Soc, 1998, 120: 12363-12363
    [24] Yamakoshi Y, Umezawa N, Ryu A, et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2 versus O12[J]. J Am Chem Soc, 2003, 125: 12803-12809
    [25] Wong-Ekkabut J, Baoukina S, Triompa W, et al. Computer simulation study of fullerene translocation through lipid membranes[J]. Nanotechnol, 2008, 3: 363-368
  • 加载中
计量
  • 文章访问数:  882
  • HTML全文浏览数:  838
  • PDF下载数:  663
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-11-01
倪明, 张波, 何义亮, KIM Jaekong, HUGHES Joeseph. 水介质中C60纳米晶体颗粒的扩散状态对其光化学反应活性的影响研究[J]. 环境化学, 2011, 30(9): 1533-1538.
引用本文: 倪明, 张波, 何义亮, KIM Jaekong, HUGHES Joeseph. 水介质中C60纳米晶体颗粒的扩散状态对其光化学反应活性的影响研究[J]. 环境化学, 2011, 30(9): 1533-1538.
NI Ming, ZHANG Bo, HE Yiliang, KIM Jaekong, HUGHES Joeseph. EFFECT OF C60 NANOCRYSTALLINE DISPERSION ON ITS PHOTOCHEMICAL PROPERTIES[J]. Environmental Chemistry, 2011, 30(9): 1533-1538.
Citation: NI Ming, ZHANG Bo, HE Yiliang, KIM Jaekong, HUGHES Joeseph. EFFECT OF C60 NANOCRYSTALLINE DISPERSION ON ITS PHOTOCHEMICAL PROPERTIES[J]. Environmental Chemistry, 2011, 30(9): 1533-1538.

水介质中C60纳米晶体颗粒的扩散状态对其光化学反应活性的影响研究

  • 1.  上海交通大学环境科学与工程学院, 上海, 200240;
  • 2.  School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
基金项目:

国家自然科学学金(No. 20907030)资助项目

教育部留学回国人员科研启动基金资助项目(2010年第40批)

上海交通大学"医工(理)交叉研究基金"资助.

摘要: 研究了阳离子表面活性剂CTAB,阴离子表面活性剂SDS和非离子表面活性剂TX-100和TX-405对 水介质中C60纳米晶体颗粒的光化学反应活性诱导效应.结果表明,在阳离子表面活性剂CTAB、阴离子表面活性剂SDS和非离子表面活性剂TX-405中,C60纳米晶体颗粒没有显示明显的光化学反应活性,而非离子表面活性剂TX-100能够明显诱导C60的光化学反应活性.紫外-可见吸收光谱、DLS分析和TEM成像都表明,在TX-100溶液中,C60从聚集状态向分子状态转变,尺寸变小,因而恢复其分子态C60的光化学反应活性.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回