模拟气候变暖对小麦幼苗亚细胞中Cd的动态累积的影响
Influence of simulated climate warming on Cd accumulation dynamics in subcellular compartments of Triticum aestivum L.
-
摘要: 采用气候变暖模拟实验,在高浓度Cd胁迫下,研究模拟温度与CO2浓度联合升高对小麦幼苗亚细胞中Cd的动态累积的影响,该研究旨在探索全球气候变暖背景下,作物对毒性元素Cd胁迫的微观响应过程及其机制.研究显示,随处理温度和CO2浓度的增加,根、叶部的富集系数(BF)总体呈现显著的上升趋势,叶部相比对照增加了1.98-3.37倍,根部增加1.90-2.48倍.根、叶部各亚细胞组分中的Cd浓度也呈现显著的增加趋势,但各组分中的Cd相对比例维持稳定,细胞可溶性组分占比最高,是Cd在小麦幼苗细胞中的主要贮存位点.在最高处理温度和CO2浓度条件下,Cd自根部向叶部的迁移相对对照增加1.34倍.结果表明,气候变暖将在一定程度上影响Cd在小麦幼苗中的动态富集,这很可能在多个层面上进一步强化气候变暖对生态系统、人类食品安全等方面的负性效应.Abstract: A simulated climate warming experiment was conducted to evaluate the combined effects of elevated temperature and CO2 concentration on the bioaccumulation of Cd in wheat seedlings. The aim of this study was to explore the process and the mechanism of the crop responses to the stress of Cd in future climate scenarios. The results showed that compared to control, elevated temperature and CO2 increased Cd bioaccumulation factor by 1.98-3.37 times in the shoots, by 1.90-2.48 times in the roots. Moreover, Cd concentration was also significantly increased with the increase of temperature and CO2 concentration in subcellular compartments of roots and shoots of wheat seedlings. The largest proportion of Cd was found in the soluble fractions which were the main storage site for Cd in wheat seedling cells. The increase of temperature and CO2 had no significant effect on the proportional distribution of Cd in the subcellular fractions. In addition, the root-to-shoot translocation of Cd increased significantly under the highest temperature and CO2 treatment conditions. It is likely to further strengthen the negative effects of climate warming on ecosystem, human food security and other aspects on multiple levels.
-
Key words:
- climate warming /
- wheat seedlings /
- Cd /
- subcellular
-
-
[1] IPCC. Summary for Policymakers//Climate Change 2013:The physical science basis.contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change (Stocker T F, Qin D, Plattner G K, et al.(eds.))[M].Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press, 2013. [2] TUBIELLO F N, AMTHOR J S, BOOTE K J. Crop response to elevated CO2 and world food supply. A comment on "Food for Thought..." by Long et al., Science 2006, 312:1918-1921[J]. European Journal of Agronomy, 2007, 26(3):215-233. [3] 李垄清, 吴正云, 张强,等. 气候变化对作物矿质元素利用率影响研究进展[J]. 生态学报, 2014, 5(5):1053-1060. LI L Q,WU Z Y, ZHANG Q, et al. State-of-the-art review of the impact of climatic change on bioavailability of mineral elements in crops[J]. Acta Ecologica Sinica, 2014, 5(5):1053-1060(in Chinese).
[4] HOODA P S, MCNULTY D, ALLOWAY B J. Plant availability of heavy metals in soils previously amended with heavy applications of sewage sludge[J]. J Sci Food Agric, 1997, 73(4):446-454. [5] BAGHOUR M, MORENO D A, HERNÀNDEZ J, et al. Influence of root temperature on phytoaccumulation of As, Ag, Cr and Sb in potato plants (Solanum tuberosum L. var. spunta)[J]. Journal of Environmental Science and Health. Part A. Toxic/Hazardous Substances and Environmental Engineering, 2001, 36(7):1389-1401. [6] ALBRECHT A, SCHULTZE U, LIEDGENS M, et al. Incorporating soil structure and root distribution into plant uptake models for radionuclides:Toward a more physically based transfer model[J]. Journal of Environmental Radioactivity, 2002, 59(3):329-350. [7] MANDERSCHEID R, BENDER J, JÄGER H J, et al. Effects of season long CO2 enrichment on cereals. Ⅱ. Nutrient concentrations and grain quality[J]. Agriculture, Ecosystems & Environment, 1995, 54:175-185. [8] GUO H, ZHU J, ZHOU H, et al. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions[J]. Environmental Science & Technology, 2011, 45:6997-7003. [9] 甘国娟, 刘伟, 邱亚群, 等. 湘中某冶炼区农田土壤重金属污染及生态风险评价[J]. 环境化学,2013, 32(1):132-138. GAN G J, LIU W, QIU Y Q, et al. Heavy metal pollution and ecological risk assessment of the paddy soils in a smelting area in Central Hunan[J]. Environmental Chemistry, 2013, 32(1):132-138(in Chinese).
[10] LI Y, ZHANG Q, WANG R, et al. Temperature changes the dynamics of trace element accumulation in Solanum tuberosum L.[J]. Climatic Change, 2012, 112(3-4):655-672. [11] 李裕, 张强, 王润元,等.气候变暖对春小麦籽粒痕量元素利用率的影响[J]. 农业工程学报, 2011,27(12):96-104. LI Y, ZHANG Q, WANG R Y, et al. Influence of climatic warming on accumulation of trace elements in spring wheat (Triticum aestivum L.)[J]. Transactions of the CSAE, 2011, 27(12):96-104(in Chinese).
[12] SARDANS J, PENUELAS J, ESTIARTE M. Warming and drought change trace element bioaccumulation patterns in a Mediterranean shrubland[J], Chemosphere, 2008, 70:874-885. [13] GONZALEZ-DAVILA M, SANTANA-CASIANO J M, PEREZ-PENA J, et al. Binding of Cu(Ⅱ) to the surface and exudates of the Alga Dunaliella tertiolecta in seawater[J]. Environmental Science and Technology, 1995, 29:289-301. [14] NILSEN E T, ORCUTT D M. Physiology of plant sunder stress abiotic factors[M]. New York:,John Wiley & Sons,Inc.,1996. [15] HÖGY P, KECK M, NIEHAUS K,et al. Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain[J]. Journal of Cereal Science, 2010, 52:215-220. [16] LUX A, MARTINKA M, VACULIK M, et al. Root responses to cadmium in the rhizosphere:A review[J], Journal of Experimental Botany, 2011, 62:21-37. [17] MORI S, URAGUCHI S, ISHIKAWA S, et al. Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum[J], Environmental and Experimental Botany,2009, 67:127-132. [18] STRITSIS C, CLAASSEN N. Cadmium uptake kinetics and plants factors of shoot Cd concentration[J]. Plant and Soil,2012, 367:591-603. [19] WU F B, DONG J, QIAN Q Q, et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes[J], Chemosphere, 2005, 60:1437-1446. [20] LI T, YANG X E, YANG J, et al. Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii hance[J]. Pedosphere, 2006,16:616-623. [21] YANG X, FENG Y, HE Z, et al. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation[J], Journal of Trace Elements in Medicine and Biology:Organ of the Society for Minerals and Trace Elements,2005,18:339-353. [22] LI D D, ZHOU D M, WANG P, et al. Temperature affects cadmium-induced phytotoxicity involved in subcellular cadmium distribution and oxidative stress in wheat roots[J]. Ecotoxicology and Environmental Safety, 2011, 74:2029-2035. [23] 翁南燕, 周东美, 武敬,等. 铜镉复合胁迫下温度对小麦幼苗生长及其对铜、镉和矿质营养元素吸收与各元素在亚细胞分布的影响[J]. 生态毒理学报, 2011, 6(6):607-616. WENG N Y, ZHOU D M, WU J, et al. Uptake,subcellular distributions of Cu,Cd and mineral elements,and plant growth for wheat seedlings under stress of Cu and Cd as affected by temperature[J]. Asian Journal of Ecotoxicology, 2011, 6(6):607-616(in Chinese).
[24] KANG S K, ZHANG F C, HU X T, et al. Benefits of CO2 enrich-ment on crop plants are modified by soil water status[J]. Plantand Soil, 2002, 238:69-77. -

计量
- 文章访问数: 1013
- HTML全文浏览数: 982
- PDF下载数: 339
- 施引文献: 0