冰封期达里诺尔湖主要离子特征
Major ions in Dali Lake during the icebound season
-
摘要: 通过对内蒙古达里诺尔湖冰封期湖冰与湖水进行取样, 分析总磷(TP)、总溶解性固体(TDS)、Mg2+、Ca2+、K+、Na+、Cl-、SO42- 、CO32-和HCO3-离子在冰体及水体中的分布特征及迁移过程.结果表明, 在冰体和水体阳离子中, Ca2+、Mg2+相对贫乏, 在冰体中平均浓度分别为1.37 mg·L-1和7.0 mg·L-1, 水体中平均浓度分别为4.01 mg·L-1和24.53 mg·L-1, Na+所占比例最高, 冰体与水体中平均浓度均达到92%.CO32-、HCO3-和Cl-是冰体和水体中阴离子的主要组成部分, 冰体中平均浓度分别为435.86、543.20、539.97 mg·L-1, 水体中平均浓度分别为1773.90、2556.49、1890.08 mg·L-1.Piper图表明达里诺尔湖水化学类型以Na+-CO32--Cl--HCO3-型为主.Gibbs图显示岩石风化与蒸发浓缩作用对达里诺尔湖的离子含量影响显著.通过对TP、TDS、Mg2+、Ca2+和Cl-之间的关系分析可知, 在水体中, Mg2+和Ca2+的组成随着深度的变化基本保持不变, 而在冰体中呈现无规律的变化, 在水中表现为基本不变;TP和Cl-在水体中没有相关性, 在冰中相关性不明显.无论在水体中还是在冰体中, TP和TDS具有较好的相关性(水体:r=0.94;冰体:r=0.90), 说明TDS可以在冰封期较好地示踪TP的迁移过程.Abstract: Dali Lake as the research object in this present work is sampled in water and ice during the icebound season. Total phosphorus (TP), total dissolved solids (TDS) and major ions(Mg2+, Ca2+, K+, Na+, Cl-, SO42-, CO32- and HCO3-) were measured and analyzed. The results showed that the concentration of Ca2+ and Mg2+ in lake water and ice cations is relatively low, which were 1.37 and 7.0 mg·L-1 in ice and 4.01 and 24.53 mg·L-1 in water, respectively.The dominated cation was Na+ and its concentration took the proportion of 92% whether in water or in ice of cations. CO32-, HCO3- and Cl- were the dominated ions in ice body and water body of anions. Their average concentrations are 435.86, 543.20 and 539.97 mg·L-1 in ice body and 1773.90, 2556.49 and 1890.08 mg·L-1 in water body, respectively. Piper figure indicated that the hydro-chemical type of the lake water quality belonged to Na+-CO32--Cl--HCO3-.Gibbs figure showed the ions composition was controlled by evaporation-concentration and rock weathering. By analyzing the correlations among TP, TDS, Mg2+, Ca2+ and Cl-, the compositions of Mg2+ and Ca2+ in water body displayed no change with depth, but in ice body the variation was irregular. And also, there was no correlation between TP and Cl- in the water body and their correlation in the ice body was not obvious. However, TP and TDS had a stronger correlation, which r=0.94 in water and r=0.90 in ice, respectively. It indicated that TDS can trace the process of TP migration with the increase of ice thickness and water depth during the icebound season.
-
Key words:
- Dali Lake /
- ice bound season /
- hydro-chemical type /
- migration
-
-
[1] 张英.冰及氨基酸水合中氢键的中子散射及第一性原理研究. 山东大学博士学位论文, 2006 [2] Weeks W. Sea ice:the potential of remote sensing [J]. Oceanus, 1981, 24:39-48 [3] 张岩, 李畅游, SHEN H. T., 等.乌梁素海湖冰生长过程中总氮的迁移规律 [J].水科学进展, 2013, 24(5):728-735 [4] 王利明, 甄志磊, 于瑞雪, 等.冰封期和非冰封期达里诺尔湖营养盐分布特征分析[J].节水灌溉, 2015, (2):37-39 [5] 蒲焘, 何元庆, 朱国锋, 等.丽江盆地地表水-地下水的水化学特征及其控制因素[J].环境科学, 2012, 33(1):48-54 [6] 王鹏, 尚英男, 沈立成, 等.青藏高原淡水湖泊水化学组成特征及其演化[J]. 环境科学, 2013, 34(3): 874-881 [7] 叶宏萌, 袁旭音, 葛敏霞, 等.太湖北部流域水化学特征及其控制因素[J].生态环境学报, 2010, 19(1): 23-27 [8] 侯昭华, 徐海, 安芷生.青海湖流域水化学主离子特征及控制因素初探[J].地球与环境, 2009, 37(1):11-19 [9] 胡春华, 周文斌, 夏思奇.鄱阳湖流域水化学主离子特征及其来源分析[J].环境化学, 2011, 30(9):1620-1626 [10] 孙圆圆, 何江, 吕昌伟, 等.达里诺尔湖沉积物中无机碳的形态组成[J].生态学报, 2013, 33(2):0610-0618 [11] Xiao J L, Chang Z G, Si B, et al. Partitioning of the grain-size components of Dali Lake core sediments: evidence for lake-level changes during the Holocene[J].Journal of Paleolimnology, 2009, 42:249-260 [12] Xiao J L, Si B, Zhai D Y, et al. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability [J]. Journal of Paleolimnology, 2008, 40:519-528 [13] 甄志磊, 李畅游, 李文宝, 等.内蒙古达里诺尔湖流域地表水和地下水环境同位素特征及补给关系[J].湖泊科学, 2014, 26(6):916-922 [14] 甄志磊, 张生, 史小红, 等.基于遥感技术的达里诺尔湖湖面演化研究[J].中国农村水利水电, 2013, (7):6-9 [15] Zhen Z L, LI C Y, Zhang S, et al. Characteristics and indications of hydrogen and oxygen isotopes distribution in lake ice body [J].Water Science and Technology, 2015:1065-1072 [16] 国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社, 1989, 57 [17] 郑喜玉, 张明刚, 徐旭, 等.中国盐湖志[M].北京:科学出版社, 2002:3-42 [18] 唐玺雯, 吴锦奎, 薛丽洋, 等.锡林河流域地表水水化学主离子特征及控制因素[J].环境科学, 2014, 35(1):131-142 [19] 孙媛媛, 季宏兵, 罗建美, 等.赣南小流域的水文地球化学特征和主要风化过程[J].环境化学, 2006, 25(5):550-557 [20] 鞠建廷, 朱立平, 汪勇, 等.藏南普莫雍错流域水体离子组成与空间分布及其环境意义[J].湖泊科学, 2008, 20(5):591-599 [21] Gibbs R J. Mechanisms controlling world water chemistry [J].Science, 1970, 170 (3962):1088-1090 [22] Gurrieri J T, Furniss G.Estimation of groundwater exchange in alpine lakes using non-steady mass-balance methods [J].Journal of Hydrology, 2004, 297:187-208 [23] Robinson C, Boxe C S, Guzman M I, et al. Acidity of frozen electrolyte solutions [J]. Journal of Physical Chemistry B.2006, 110(15), 7613-7616 [24] Wang Y J, Sun Z D. Lakes in the arid areas in China [J]. Arid Zone Research, 2007, 24(4):422-427 [25] 王利书, 唐泽军.石羊河流域地下水循环的同位素和地球化学演化特征[J].环境科学学报, 2013, 33(6):1748-1755 [26] Zhang Y, Li C Y, Shi X H, et al. Total dissolved solids migration in Ulansuhai Lake in natural freezing process [J].Journal of arid land, 2012, 4 (1):85-94 -

计量
- 文章访问数: 1308
- HTML全文浏览数: 1225
- PDF下载数: 520
- 施引文献: 0