白玉兰落叶水浸出液抑制蓝藻生长和叶绿素荧光特性分析
Effects of aqueous extract of Magnolia denudata defoliation on the growth and chlorophyll fluorescence characteristics of cyanobacterium
-
摘要: 利用浮游植物荧光仪对暴露于不同浓度白玉兰落叶水浸出液下微囊藻生长、最大光合作用效率(Fv/Fm)、实际光合作用效率、光能利用效率(alpha)和最大相对电子传递速率(rETRmax)进行为期15 d的检测, 分析白玉兰落叶浸出液对微囊藻的抑制效应和叶绿素荧光特性影响.结果发现, 白玉兰落叶浸出液能有效抑制微囊藻的生长, 呈明显浓度抑制型变化, 抑藻能力随时间的延长而下降.低浓度(0.4、0.8、1.2、1.6 g·L-1)浸出液胁迫下, 对微囊藻叶绿素荧光参数无显著影响;高浓度(2.0 g·L-1) 浸出液胁迫下, 在早期(4 d内) 对荧光参数有极显著抑制作用.三维荧光图谱表明, 在投量为2.0 g·L-1时, 第15天色氨酸及酪氨酸荧光峰强度约为1.2 g·L-1投量情况下的1/3, 同时腐殖酸的荧光峰强度减弱.第7—15天, 藻细胞生长的半抑制浓度EC50值最小约为0.5—0.7 g·L-1.Abstract: The growth and physiology of bloom-forming M. aeruginosa were determined by the pulse amplitude modulated fluorimetry when exposed to aqueous extract of M. denudata defoliation for 15 d. The cell growth, maximal efficiency (Fv/Fm), effective quantum yield (Y(Ⅱ)) of PSⅡ photochemistry, photosynthesis efficiency (alpha) and maximum relative electron transport rate (rETRmax) were used to evaluate the growth and photosynthesis in M. aeruginosa. The extract stored for 5 days significantly inhibited the growth of M. aeruginosa in a concentration-dependent way. It showed that low concentrations (0.4, 0.8, 1.2 and 1.6 g·L-1) of the extract had little effect on the four chlorophyll fluorescence parameters. However, high concentration (2.0 g·L-1) of the extract significantly affected the fluorescence parameters at early stage (4 d). Three-dimensional fluorescence spectroscopy showed that on day 15 of the treatment the peak intensity of tryptophan and tyrosine fluorescence with 2.0 g·L-1 extract is about a third of than 1.2 g·L-1 extract. At the same time, the peak intensity of humic acid fluorescence was much weaker. On 7—15 d, the EC50 of algal growth was the smallest which was about 0.5—0.7 g·L-1.
-
[1] 闫海, 潘纲, 张明明, 等.微囊藻毒素的提取和提纯研究[J].环境科学学报, 2004, 24(2):355-359 [2] 汪小雄, 姜成春, 朱佳, 等.臭氧灭活水中铜绿微囊藻影响因素研究[J].中国环境科学, 2012, 32(4):653-658 [3] Della G M, Isidori M, Lavorgna M, et al. Bioactivity of phenanthrenes from Juncus acutus on Selenastrum capricornutum[J]. Journal of Chemical Ecology, 2004, 30(4): 867-879 [4] 庄源益, 赵凡, 戴树桂, 等.高等水生植物对藻类生长的克制效应[J].环境科学进展, 1995, 6(3): 44-49 [5] Nakai S, Inoue Y, Hosomi M, et al. Growth inhibition of blue-green algae by allelopathic effects of marophytes [J]. Water Science and Technology, 1999, 39(8): 47-53 [6] 花铭, 陈良燕, 尹大强.邻苯三酚和咖啡酸对铜绿微囊藻的化感作用及其机理[J].环境化学, 2008, 27(3): 331-334 [7] 汪小雄, 姜成春, 朱佳, 等.微生物在除藻方面的应用研究[J].工业水处理, 2011, 31(2):1-4 [8] 张彬, 王书敏, 刘小兵, 等.植物化感抑藻物质研究[J].给水排水, 2011, 37(4): 115-121 [9] VYVYAN J R. Allelochemicals as leads for new herbicides and agrochemicals[J]. Tetrahedron, 2002, 58(9): 1631-1646 [10] 肖溪.大麦秸秆对蓝藻化感抑制作用与机理的研究.杭州, 浙江大学博士学位论文, 2012 [11] Everall N C, Lees D R. The identification and significance of chemicals released from decomposing barley straw during reservoir algal control[J]. Water Research, 1997, 31(3), 614-620 [12] Ball A S, Williams M, Vincet, et al. Algal growth control by a barley straw extract[J]. Bioresource Technology, 2001, 77(2): 177-181 [13] 冯菁, 朱擎, 吴为中, 等.稻草浸泡液对藻类抑制作用机制[J].环境科学, 2008, 29 (12):3376-3381 [14] 吴小平, 张平静.发酵稻草抑藻机理研究[J].生态环境, 2006, 15(1):20-22 [15] 苏文, 孔繁翔, 于洋, 等.水稻秸秆浸泡液对铜绿微囊藻生理特性的影响[J].环境科学, 2013, 34(1):150-155 [16] 董昆明, 缪莉, 李楠, 等.广玉兰叶片浸提液中抑铜绿微囊藻化学成分分析[J].环境化学, 2011, 30(12):1253-1258 [17] 靳翠丽, 周晓见, 李楠, 等.广玉兰提取物对铜绿微囊藻抑制作用的机制研究[J].环境污染与防治, 2011, 31(12):50-53 [18] Rippka R, Deruelles J, Waterbury J B, et al. Generic assignments, strain histories and properties of pure cultures of cyanobacteria[J]. Journal of General Microbiology, 1979, 111(1): 1-61 [19] 贾春生.利用SPSS软件计算杀虫剂的LC50[J].昆虫知识, 2006, 43(3):414-417 [20] Xiao X, Chen Y X, Liang X Q, et al. Tibetan hulless barley efficiently inhibited bloom-forming cyanobacterium Microcystis aeruginosa[J]. Chemosphere, 2010, 81(9): 1118-1123 [21] 张余霞, 张玲, 张阳阳, 等.盐京九号水稻秸秆对铜绿微囊藻的抑制作用[J].生态与农村环境学报, 2008, 24 (3): 60-63 , 80
[22] 孙颖颖, 王长海.球等鞭金藻生长抑制物的抑藻机理[J].浙江大学学报, 2009, 35(1):51-57 [23] 李小路, 潘慧云, 徐洁, 等.金鱼藻与铜绿微囊藻共生情况下的化感作用[J]. 环境科学学报, 2008, 28 (11):2243-2249 [24] 陈国元, 唐凯.不同质量浓度黄菖蒲和狭叶香蒲对铜绿微囊藻的化感作用[J].环境工程学报, 2014, 8(2):465-470 [25] Hong Y, Hu H Y, Li F M. Physiological and biochemical effects of Allelo-chemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2008, 71(2): 527-534 [26] Kooten O V, Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynthesis Research, 1990, 25(3): 147-150 [27] 梁英, 冯力霞, 尹翠玲, 等.叶绿素荧光技术在微藻环境胁迫研究中的应用现状及前景[J].海洋科学, 2007, 31(1): 71-76 [28] KÜRner S, Nichllisch A. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes[J]. Journal of Phycology, 2002, 38(5): 862-871 [29] Wu J, Chiang Y, Huang W, et al. Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria[J]. Aquatic Toxicology, 2006, 80(4): 338-345 [30] Waridel P, Wolfender J L, Lachavanne J B, et al. Ent-Labdane glycosides from the aquatic plant Potamogeton lucensand analytical evaluation of the lipophilic extract constituents of various Potamogeton species[J]. Phytochemistry, 2004, 65(7): 945-954 [31] Nakai S, Yamad S, Hosomi M. Anti-cyanobacterial fatty acids released from Myriophyllum spicatum[J]. Hydrobiologia, 2005, 543(1): 71-78 [32] 姜恒, 吴斌, 阎冰, 等.桉树叶水浸出液对2种海洋微藻生长和叶绿素荧光特性的影响[J].环境科学研究, 2013, 26(11):1186-1193 [33] Chen W, Westerhoff P, Leeneer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710 [34] 马敏, 刘锐平, 刘会娟, 等.预氯化对铝盐混凝铜绿微囊藻过程中溶解性有机物和残余铝的影响[J].环境科学学报, 2014, 34(1): 73-78 [35] Huang H M, Xiao X, Ghadouani A, et al. Effects of natural flavonoids on photosynthetic activity and cell integrity in Microcystis aeruginosa[J]. Toxins, 2015, 7: 66-80
计量
- 文章访问数: 1457
- HTML全文浏览数: 1396
- PDF下载数: 573
- 施引文献: 0