[1]
|
Lima A L C, Farrington J W, Reddy C M. Combustion-derived polycyclic aromatic hydrocarbons in the environment-A review[J]. Environmental Forensics, 2005, 6 (2):109-131
|
[2]
|
Ravindra K, Sokhi R, Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation[J]. Atmospheric Environment, 2008, 42(13):2895-2921
|
[3]
|
Harvey R G. Polycyclic aromatic hydrocarbons: Chemistry and carcinogenicity[M]. Cambridge University Press Archive:1991
|
[4]
|
Pedersen D U, Durant J L, Penman B W, et al. Human-cell mutagens in respirable airborne particles in the northeastern United States. 1. Mutagenicity of fractionated samples[J]. Environmental Science & Technology, 2004, 38(3):682-689
|
[5]
|
Harrison R M, Smith D, Luhana L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK[J]. Environmental Science & Technology, 1996, 30(3):825-832
|
[6]
|
Larsen R K, Baker J E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods[J]. Environmental Science & Technology, 2003, 37(9):1873-1881
|
[7]
|
Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4):489-515
|
[8]
|
Zhang X, Tao S, Liu W, et al. Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: A multimedia approach[J]. Environmental Science & Technology, 2005, 39(23):9109-9114
|
[9]
|
O'malley V P, Abrajano Jr T A, Hellou J. Determination of the 13C/12C ratios of individual PAH from environmental samples: Can PAH sources be apportioned?[J]. Organic Geochemistry, 1994, 21(6):809-822
|
[10]
|
Okuda T, Kumata H, Naraoka H, et al. Origin of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Chinese cities solved by compound-specific stable carbon isotopic analyses[J]. Organic Geochemistry, 2002, 33(12):1737-1745
|
[11]
|
Currie L, Eglinton T, Benner Jr B, et al. Radiocarbon "dating" of individual chemical compounds in atmospheric aerosol: First results comparing direct isotopic and multivariate statistical apportionment of specific polycyclic aromatic hydrocarbons[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 123(1):475-486
|
[12]
|
Reddy C M, Pearson A, Xu L, et al. Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples[J]. Environmental Science & Technology, 2002, 36 (8):1774-1782
|
[13]
|
Mook W G. Introduction to isotope hydrology: Stable and radioactive isotopes of hydrogen, carbon, and oxygen-chapter 5[M]. Taylor and Francis, 2005:25
|
[14]
|
Galarneau E. Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment[J]. Atmospheric Environment, 2008, 42(35):8139-8149
|
[15]
|
Kanke H, Uchida M, Okuda T, et al. Compound-specific radiocarbon analysis of polycyclic aromatic hydrocarbons (PAHs) in sediments from an urban reservoir[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223:545-554
|
[16]
|
Mandalakis M, Gustafsson O, Reddy C M, et al. Radiocarbon apportionment of fossil versus biofuel combustion sources of polycyclic aromatic hydrocarbons in the Stockholm metropolitan area[J]. Environmental Science & Technology, 2004, 38(20):5344-5349
|
[17]
|
Mandalakis M, Gustafsson O, Alsberg T, et al. Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites[J]. Environmental Science & Technology, 2005, 39(9):2976-2982
|
[18]
|
Kumata H, Uchida M, Sakuma E, et al. Compound class specific C-14 analysis of polycyclic aromatic hydrocarbons associated with PM10 and PM1.1 aerosols from residential areas of suburban Tokyo[J]. Environmental Science & Technology, 2006, 40(11):3474-3480
|
[19]
|
Zencak Z, Klanova J, Holoubek I, et al. Source apportionment of atmospheric PAHs in the western balkans by natural abundance radiocarbon analysis[J]. Environmental Science & Technology, 2007, 41(11):3850-3855
|
[20]
|
Sheesley R J, Krusa M, Krecl P, et al. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis[J]. Atmospheric Chemistry and Physics, 2009, 9(10):3347-3356
|
[21]
|
Slater G F, Benson A A, Marvin C, et al. PAH fluxes to siskiwit revisted: trends in fluxes and sources of pyrogenic pah and perylene constrained via radiocarbon analysis[J]. Environmental Science & Technology, 2013, 47(10):5066-5073.
|
[22]
|
Xu L, Zheng M, Ding X, et al. Modern and Fossil Contributions to Polycyclic Aromatic Hydrocarbons in PM2.5 from North Birmingham, Alabama in the Southeastern U.S.[J]. Environmental Science & Technology, 2012, 46(3):1422-1429
|
[23]
|
Libby W F. Atmospheric helium three and radiocarbon from cosmic radiation[J]. Physical Review, 1946, 69(11-12):671
|
[24]
|
Libby W F, Anderson E C, Arnold J R. Age determination by radiocarbon content: World-wide assay of natural radiocarbon[J]. Science, 1949, 109(2827):227-228
|
[25]
|
Hua Q, Barbetti M, Rakowski A Z. Atmospheric radiocarbon for the period 1950—2010[J]. Radiocarbon, 2013, 55(4):2059-2072
|
[26]
|
Stuiver M, Polach H A. Discussion: Reporting of 14C Data[J]. Radiocarbon, 1977, 19(3):355-363
|
[27]
|
Clayton G D, Arnold J R, Patty F A. Determination of sources of particulate atmospheric carbon[J]. Science, 1955, 122(3173):751-753.
|
[28]
|
Currie L A. Environmental radiocarbon measurements[R]. Proceedings of the First Conference on Radiocarbon Dating with Accelerators, 1978:372-390
|
[29]
|
Shah S R, Pearson A. Ultra-Microscale (5—25 μg C) Analysis of Individual Lipids by 14C AMS: Assessment and Correction for Sample Processing Blanks[J]. Radiocarbon, 2007, 49(1):69-82
|
[30]
|
Pearson A, McNichol A P, Schneider R J, et al. Microscale AMS C-14 measurement at NOSAMS[J]. Radiocarbon, 1998, 40(1):61-75
|
[31]
|
Uchida M, Shibata Y, Yoneda M, et al. Technical progress in AMS microscale radiocarbon analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223:313-317
|
[32]
|
Reddy C M, Xu L, O'connor R. Using radiocarbon to apportion sources of polycyclic aromatic hydrocarbons in household soot[J]. Environmental Forensics, 2003, 4(3):191-197
|
[33]
|
Mandalakis M, Zebuhr Y, Gustafsson O. Efficient isolation of polyaromatic fraction from aliphatic compounds in complex extracts using dimethylformamide-pentane partitionings[J]. Journal of Chromatography A, 2004, 1041(1/2):111-117
|
[34]
|
Mandalakis M, Gustafsson O. Optimization of a preparative capillary gas chromatography-mass spectrometry system for the isolation and harvesting of individual polycyclic aromatic hydrocarbons[J]. Journal of Chromatography A, 2003, 996(1/2):163-172
|
[35]
|
Zhang X Y, Zhao L, Wang Y X, et al. Optimization of programmed-temperature vaporization injection preparative capillary GC for compound specific radiocarbon analysis[J]. Journal of Separation Science, 2013, 36(13):2136-2144
|
[36]
|
Ball G I, Xu L, McNichol A P, et al. A two-dimensional, heart-cutting preparative gas chromatograph facilitates highly resolved single-compound isolations with utility towards compound-specific natural abundance radiocarbon (C-14) analyses[J]. Journal of Chromatography A, 2012, 1220:122-131
|
[37]
|
Sciarrone D, Panto S, Tranchida P Q, et al. Rapid isolation of high solute amounts using an online four-dimensional preparative system: normal phase-liquid chromatography coupled to methyl siloxane-ionic liquid-wax phase gas chromatography[J]. 2014, 86(9):4295-4301
|
[38]
|
Suess H E. Radiocarbon concentration in modern wood[J]. Science, 1955, 122(3166):415-417
|
[39]
|
Hsueh D Y, Krakauer N Y, Randerson J T, et al. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America[J]. Geophysical Research Letters, 2007, 34(2):1-6
|
[40]
|
Xi X T, Ding X F, Fu D P, et al. Delta C-14 level of annual plants and fossil fuel derived CO2 distribution across different regions of China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294:515-519
|
[41]
|
Wang W W, Pataki D E. Spatial patterns of plant isotope tracers in the Los Angeles urban region[J]. Landscape Ecology, 2010, 25(1):35-52
|
[42]
|
Park J H, Hong W, Park G, et al. Comparison of Distribution Maps of Delta C-14 in 2010 and 2011 in Korea[J]. Radiocarbon, 2013, 55(2/3):841-847
|
[43]
|
Ding P, Shen C D, Yi W X, et al. Fossil-fuel-derived CO2 contribution to the urban atmosphere in Guangzhou, South China, estimated by (CO2)-C-14 Observation, 2010-2011[J]. Radiocarbon, 2013, 55(2/3):791-803
|
[44]
|
Zhou W J, Wu S G, Huo W W, et al. Tracing fossil fuel CO2 using Delta C-14 in Xi'an City, China[J]. Atmospheric Environment, 2014, 94:538-545
|
[45]
|
Xi X T, Ding X F, Fu D P, et al. Regional Delta C-14 patterns and fossil fuel derived CO2 distribution in the Beijing area using annual plants[J]. Chinese Science Bulletin, 2011, 56(16):1721-1726
|
[46]
|
Klinedinst D B, Currie L A. Direct quantification of PM2.5 fossil and biomass carbon within the Northern Front Range Air Quality Study's domain[J]. Environmental Science & Technology, 1999, 33(23):4146-4154
|
[47]
|
Zencak Z, Elmquist M, Gustafsson O. Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method[J]. Atmospheric Environment, 2007, 41(36):7895-7906
|
[48]
|
Southon J. Are the fractionation corrections correct: Are the isotopic shifts for C-14/C-12 ratios in physical processes and chemical reactions really twice those for C-13/C-12[J]? Radiocarbon, 2011, 53(4):691-704
|
[49]
|
Zencak Z, Reddy C M, Teuten E L, et al. Evaluation of gas chromatographic isotope fractionation and process contamination by carbon in compound-specific radiocarbon analysis[J]. Analitycal Chemistry, 2007, 79(5):2042-2049
|
[50]
|
Eglinton T I, Aluwihare L I, Bauer J E, et al. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating[J]. Analitycal Chemistry, 1996, 68(5):904-912
|
[51]
|
Slater G F, White H K, Eglinton T I, et al. Determination of microbial carbon sources in petroleum contaminated sediments using molecular C-14 analysis[J]. Environmental science & technology, 2005, 39(8):2552-2558
|
[52]
|
Teuten E L, Xu L, Reddy C M. Two abundant bioaccumulated halogenated compounds are natural products[J]. Science, 2005, 307(5711):917-920
|
[53]
|
Ingalls A E, Pearson A. Ten years of compound-specific radiocarbon analysis[J]. Oceanography, 2005, 18(3):18-31
|
[54]
|
赵美训, 于蒙, 张海龙, 等.单体分子放射性碳同位素分析在海洋科学及环境科学研究中的应用[J]. 海洋学报, 2014, 36(4):1-10
|
[55]
|
Synal H A. Developments in accelerator mass spectrometry[J]. International Journal of Mass Spectrometry, 2013, 349:192-202
|
[56]
|
Flarakos J, Liberman R G, Tannenbaum S R, et al. Integration of continuous-flow accelerator mass spectrometry with chromatography and mass-selective detection[J]. Analytical Chemistry, 2008, 80(13):5079-5085
|
[57]
|
McIntyre C P, Galutschek E, Roberts M L, et al. A continuous-flow gas chromatography C-14 accelerator mass spectrometry system[J]. Radiocarbon, 2010, 52(2):295-300
|