氧氟沙星和诺氟沙星的水环境光化学转化: pH值及溶解性物质的影响

尉小旋, 陈景文, 王如冰, 郭芳婕, 曾宇飞, 李雨昕, 吴英格. 氧氟沙星和诺氟沙星的水环境光化学转化: pH值及溶解性物质的影响[J]. 环境化学, 2015, 34(3): 448-454. doi: 10.7524/j.issn.0254-6108.2015.03.2014061808
引用本文: 尉小旋, 陈景文, 王如冰, 郭芳婕, 曾宇飞, 李雨昕, 吴英格. 氧氟沙星和诺氟沙星的水环境光化学转化: pH值及溶解性物质的影响[J]. 环境化学, 2015, 34(3): 448-454. doi: 10.7524/j.issn.0254-6108.2015.03.2014061808
WEI Xiaoxuan, CHEN Jingwen, WANG Rubing, GUO Fangjie, ZENG Yufei, LI Yuxin, WU Yingge. Aquatic photochemical transformation of ofloxacin and norfloxacin: Effects of pH and water constituents[J]. Environmental Chemistry, 2015, 34(3): 448-454. doi: 10.7524/j.issn.0254-6108.2015.03.2014061808
Citation: WEI Xiaoxuan, CHEN Jingwen, WANG Rubing, GUO Fangjie, ZENG Yufei, LI Yuxin, WU Yingge. Aquatic photochemical transformation of ofloxacin and norfloxacin: Effects of pH and water constituents[J]. Environmental Chemistry, 2015, 34(3): 448-454. doi: 10.7524/j.issn.0254-6108.2015.03.2014061808

氧氟沙星和诺氟沙星的水环境光化学转化: pH值及溶解性物质的影响

  • 基金项目:

    国家重点基础研究计划(973计划)课题(2013CB430403)

    国家自然科学基金(21137001)资助.

Aquatic photochemical transformation of ofloxacin and norfloxacin: Effects of pH and water constituents

  • Fund Project:
  • 摘要: 在模拟日光照射下,考察了氧氟沙星和诺氟沙星在纯水和天然水中的光降解行为,结果表明,氧氟沙星和诺氟沙星的光降解随pH增加(pH=4—10)先增快后减慢,两种抗生素以两性离子形态存在时光解最快.氧氟沙星和诺氟沙星在天然水中的光降解显著慢于其在相似pH条件下(pH=8)纯水中的光降解,天然水中的溶解性物质对两种抗生素的光降解总体表现为抑制作用.以Suwannee河富里酸为例,研究了溶解性有机质(DOM)的影响机制,发现淡水中高浓度的DOM主要通过竞争光吸收抑制氧氟沙星和诺氟沙星的光解,而海水中低浓度的DOM可以通过淬灭活性物种抑制两种抗生素的光解.天然水中的金属阳离子(Ca2+和Fe3+)和NO3-分别通过配位作用和光致生成·OH影响氧氟沙星和诺氟沙星的降解.由此可见,氧氟沙星和诺氟沙星在天然水中的光化学行为依赖于水体pH值和溶解性物质的综合影响.
  • 加载中
  • [1] Segura P A, Francois M, Gagnon C, et al. Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters[J]. Environmental Health Perspectives, 2009, 117(5): 675-684
    [2] Larsson D G J, De Pedro C, Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals[J]. Journal of Hazardous Materials, 2007, 148(3):751-755
    [3] Yiruhan, Wang Q J, Mo C H, et al. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao[J]. Environmental Pollution, 2010, 158(7): 2350-2358
    [4] Gullberg E, Cao S, Berg O G, et al. Selection of resistant bacteria at very low antibiotic concentrations[J]. PLoS Pathogens, 2011, 7(7): e1002158
    [5] Hu J Y, Wang W, Zhu Z, et al. Quantitative structure-Activity relationship model for prediction of genotoxic potential for quinolone antibacterials[J]. Environment Science & Technology, 2007, 41(13): 4806-4812
    [6] Ge L K, Chen J W, Wei X X, et al. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents[J]. Environment Science & Technology, 2010, 44(7): 2400-2405
    [7] Li Y, Niu J F, Wang W L. Photolysis of enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products[J]. Chemosphere, 2011, 85(5): 892-897
    [8] Sturini M, Speltini A, Maraschi F, et al. Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts[J]. Water Research 2012, 46(17): 5575-5582
    [9] 葛林科, 张思玉, 谢晴, 等. 抗生素在水环境中的光化学行为研究进展[J]. 中国科学: 化学, 2010, 40(2): 124-135
    [10] Ge L K, Chen J W, Lin J, et al. Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: Mechanism and kinetics[J]. Environment Science & Technology, 2009, 43(9): 3101-3107
    [11] Chen Y, Hu C, Qu J H, et al. Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008,197(1): 81-87
    [12] Boreen A L, Arnold W A, McNeill K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups[J]. Environment Science & Technology, 2004, 38(14): 3933-3940
    [13] Boreen A L, Arnold W A, McNeill K. Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: Identification of an SO2 extrusion photoproduct[J]. Environment Science & Technology, 2005, 39(10): 3630-3638
    [14] Werner J J, Arnold W A, McNeill K. Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH[J]. Environment Science & Technology, 2006, 40(23): 7236-7241
    [15] Zhou D N, Huang W Y, Wu F, et al. Photodegradation of chloromycetin in aqueous solutions: Kinetics and influencing factors[J]. Reaction Kinetics, Mechanisms and Catalysis, 2010, 100(1): 45-53
    [16] Vione D, Feitosa-Felizzola J, Minero C, et al. Phototransformation of selected human-used macrolides in surface water: Kinetics, model predictions and degradation pathways[J]. Water Research, 2009, 43(7): 1959-1967
    [17] 大连理工大学无机化学教研室编. 无机化学(第5版) [M]. 北京: 高等教育出版社, 2006: 691
    [18] Xie Q, Chen J W, Zhao H X, et al. Different photolysis kinetics and photooxidation reactivities of neutral and anionic hydroxylated polybrominated diphenyl ethers[J]. Chemosphere, 2013, 90 (2): 188-194
    [19] Espinoza L A T, Neamtu M, Frimmel F H. The effect of nitrate, Fe(Ⅲ) and bicarbonate on the degradation of bisphenol A by simulated solar UV-irradiation[J]. Water Research, 2007, 41(19): 4479-4487
    [20] Qiang Z M, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics[J]. Water Research, 2004, 38(12): 2874-2890
    [21] Wei X X, Chen J W, Xie Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin[J]. Environment Science & Technology, 2013, 47(9): 4284-4290
    [22] Wenk J, von Gunten U, Canonica S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical[J]. Environment Science & Technology, 2011, 45(4): 1334-1340
    [23] Jiao S J, Zheng S R, Yin D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria[J]. Chemosphere, 2008,73(3): 377-382
    [24] Park H R, Chung K Y, Lee H C, et al. Ionization and divalent cation complexation of quinolone antibiotics in aqueous solution[J]. Bulletin of the Korean Chemical Society, 2000, 21(9):849-854
    [25] Urbaniak B, Mrestani Y, Kokot Z J, et al. Investigation of interaction of fluoroquinolones with aluminum, iron and magnesium ions using capillary zone eletrophoresis[J]. Chromatographia, 2007, 65(7/8): 489-492
    [26] Haag W R, Yao C C D. Rate constants for reaction of hydroxyl radicals with several drinking-water contaminants[J]. Environmental Science & Technology, 1992, 26(5): 1005-1013
  • 加载中
计量
  • 文章访问数:  4855
  • HTML全文浏览数:  4712
  • PDF下载数:  891
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-06-18
  • 刊出日期:  2015-03-15
尉小旋, 陈景文, 王如冰, 郭芳婕, 曾宇飞, 李雨昕, 吴英格. 氧氟沙星和诺氟沙星的水环境光化学转化: pH值及溶解性物质的影响[J]. 环境化学, 2015, 34(3): 448-454. doi: 10.7524/j.issn.0254-6108.2015.03.2014061808
引用本文: 尉小旋, 陈景文, 王如冰, 郭芳婕, 曾宇飞, 李雨昕, 吴英格. 氧氟沙星和诺氟沙星的水环境光化学转化: pH值及溶解性物质的影响[J]. 环境化学, 2015, 34(3): 448-454. doi: 10.7524/j.issn.0254-6108.2015.03.2014061808
WEI Xiaoxuan, CHEN Jingwen, WANG Rubing, GUO Fangjie, ZENG Yufei, LI Yuxin, WU Yingge. Aquatic photochemical transformation of ofloxacin and norfloxacin: Effects of pH and water constituents[J]. Environmental Chemistry, 2015, 34(3): 448-454. doi: 10.7524/j.issn.0254-6108.2015.03.2014061808
Citation: WEI Xiaoxuan, CHEN Jingwen, WANG Rubing, GUO Fangjie, ZENG Yufei, LI Yuxin, WU Yingge. Aquatic photochemical transformation of ofloxacin and norfloxacin: Effects of pH and water constituents[J]. Environmental Chemistry, 2015, 34(3): 448-454. doi: 10.7524/j.issn.0254-6108.2015.03.2014061808

氧氟沙星和诺氟沙星的水环境光化学转化: pH值及溶解性物质的影响

  • 1. 大连理工大学环境学院工业生态与环境工程教育部重点实验室, 大连, 116024
基金项目:

国家重点基础研究计划(973计划)课题(2013CB430403)

国家自然科学基金(21137001)资助.

摘要: 在模拟日光照射下,考察了氧氟沙星和诺氟沙星在纯水和天然水中的光降解行为,结果表明,氧氟沙星和诺氟沙星的光降解随pH增加(pH=4—10)先增快后减慢,两种抗生素以两性离子形态存在时光解最快.氧氟沙星和诺氟沙星在天然水中的光降解显著慢于其在相似pH条件下(pH=8)纯水中的光降解,天然水中的溶解性物质对两种抗生素的光降解总体表现为抑制作用.以Suwannee河富里酸为例,研究了溶解性有机质(DOM)的影响机制,发现淡水中高浓度的DOM主要通过竞争光吸收抑制氧氟沙星和诺氟沙星的光解,而海水中低浓度的DOM可以通过淬灭活性物种抑制两种抗生素的光解.天然水中的金属阳离子(Ca2+和Fe3+)和NO3-分别通过配位作用和光致生成·OH影响氧氟沙星和诺氟沙星的降解.由此可见,氧氟沙星和诺氟沙星在天然水中的光化学行为依赖于水体pH值和溶解性物质的综合影响.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回