天津市松针中可挥发全(多)氟取代烷基化合物的分布

赵洋洋, 姚义鸣, 孙红文. 天津市松针中可挥发全(多)氟取代烷基化合物的分布[J]. 环境化学, 2014, 33(12): 2102-2108. doi: 10.7524/j.issn.0254-6108.2014.12.002
引用本文: 赵洋洋, 姚义鸣, 孙红文. 天津市松针中可挥发全(多)氟取代烷基化合物的分布[J]. 环境化学, 2014, 33(12): 2102-2108. doi: 10.7524/j.issn.0254-6108.2014.12.002
ZHAO Yangyang, YAO Yiming, SUN Hongwen. Distribution of volatile per(poly)fluoroalkyl substances in pine needles of Tianjin[J]. Environmental Chemistry, 2014, 33(12): 2102-2108. doi: 10.7524/j.issn.0254-6108.2014.12.002
Citation: ZHAO Yangyang, YAO Yiming, SUN Hongwen. Distribution of volatile per(poly)fluoroalkyl substances in pine needles of Tianjin[J]. Environmental Chemistry, 2014, 33(12): 2102-2108. doi: 10.7524/j.issn.0254-6108.2014.12.002

天津市松针中可挥发全(多)氟取代烷基化合物的分布

  • 基金项目:

    教育部博士点专项基金(20130031110027)与国家杰出青年基金资助(41225014)资助.

Distribution of volatile per(poly)fluoroalkyl substances in pine needles of Tianjin

  • Fund Project:
  • 摘要: 本研究调查了天津市松针中6种可挥发PFASs的浓度水平,旨在探讨松针作为可挥发PFASs天然被动采样装置的可行性.结果表明,松针中可挥发PFASs的总浓度范围为0.43—45.69 ng·g-1(脂质),平均浓度4.92 ng·g-1(脂质),不同采样点PFASs的浓度水平存在差异.8:2氟调醇和10:2氟调醇是松针中的主要检出物,8:2氟调醇的检出率高达85%,浓度在0.23—17.46 ng·g-1(脂质)之间,10:2氟调醇全部被检出,浓度范围为0.43—28.23 ng·g-1(脂质);N-乙基全氟辛烷磺酰胺和N-乙基全氟辛烷磺酰胺基乙醇的检出率较低;而N-甲基全氟辛烷磺酰胺基乙醇和6:2氟调醇在松针中未被检出.松针中氟调醇的浓度水平随着碳链长度增加而增加.与大气被动采样器相比,松针可作为被动采样的一种形式,从一定程度上反映大气中可挥发PFASs的浓度水平.
  • 加载中
  • [1] Butt C M, Berger U, Bossi R, et al. Levels and trends of poly-and perfluorinated compounds in the arctic environment[J]. The Science of the Total Environment, 2010, 408(15): 2936-2965
    [2] Dreyer A, Ebinghaus R. Polyfluorinated compounds in ambient air from ship-and land-based measurements in northern Germany[J]. Atmospheric Environment, 2009, 43(8): 1527-1535
    [3] Shoeib M, Vlahos P, Harner T, et al. Survey of polyfluorinated chemicals (PFCs) in the atmosphere over the northeast Atlantic Ocean[J]. Atmospheric Environment, 2010, 44(24): 2887-2893
    [4] Ahrens L, Barber J L, Xie Z, Ebinghaus R. Longitudinal and latitudinal distribution of perfluoroalkyl compounds in the surface water of the Atlantic Ocean[J]. Environmental Science & Technology, 2009, 43(9): 3122-3127
    [5] Becker A M, Gerstmann S, Frank H. Perfluorooctane surfactants in waste waters, the major source of river pollution[J]. Chemosphere, 2008, 72(1): 115-121
    [6] Ahrens L, Yamashita N, Yeung L W Y, et al. Partitioning behavior of per-and polyfluoroalkyl compounds between pore water and sediment in two sediment cores from Tokyo Bay, Japan[J]. Environmental Science & Technology, 2009, 43(18): 6969-6975
    [7] Houde M, De Silva A O, Muir D C G, et al. Monitoring of perfluorinated compounds in aquatic biota: An updated review PFCs in aquatic biota[J]. Environmental Science & Technology, 2011, 45(19): 7962-7973
    [8] Houde M, Martin J W, Letcher R J, et al. Biological monitoring of polyfluoroalkyl substances: A review[J]. Environmental Science & Technology, 2006, 40(11): 3463-3473
    [9] Zhang T, Sun H, Lin Y, et al. Distribution of poly-and perfluoroalkyl substances in matched samples from pregnant women and carbon chain length related maternal transfer[J]. Environmental Science & Technology, 2013, 47(14): 7974-7981
    [10] Kubwabo C, Vais N, Benoit F M. A pilot study on the determination of perfluorooctanesulfonate and other perfluorinated compounds in blood of Canadians[J]. Journal of Environmental Monitoring, 2004, 6(6): 540
    [11] Zhang T, Sun H, Lin Y, et al. Perfluorinated compounds in human blood, water, edible freshwater fish, and seafood in China: Daily intake and regional differences in human exposures[J]. Journal of Agricultural and Food Chemistry, 2011, 59(20): 11168-11176
    [12] Giesy J P, Naile J E, Khim J S, et al. Aquatic toxicology of perfluorinated chemicals[J]. In Reviews of Environmental Contamination and Toxicology, 2010, 202(1): 1-52
    [13] Joensen U N, Bossi R, Leffers H, et al. Do perfluoroalkyl compounds impair human semen quality?[J]. Environmental Health Perspectives, 2009, 117(6): 923-927
    [14] Ohmori K, Kudo N, Katayama K, et al. Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length[J]. Toxicology, 2003, 184(2/3): 135-140
    [15] Ellis D A, Martin J W, De Silva A O, et al. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids[J]. Environmental Science & Technology, 2004, 38(12): 3316-3321
    [16] Dreyer A, Weinberg I, Temme C, et al. Polyfluorinated Compounds in the atmosphere of the Atlantic and Southern Oceans: Evidence for a global distribution[J]. Environmental Science & Technology, 2009, 43(17): 6507-6514
    [17] Blanco M B, Bejan I, Barnes I, et al. Atmospheric photooxidation of fluoroacetates as a source of fluorocarboxylic acids[J]. Environmental Science & Technology, 2010, 44(7): 2354-2359
    [18] Zhao L, McCausland P K, Folsom P W, et al. 6:2 Fluorotelomer alcohol aerobic biotransformation in activated sludge from two domestic wastewater treatment plants[J]. Chemosphere, 2013, 92(4): 464-470
    [19] Schlummer M, Gruber L, Fiedler D, et al. Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure[J]. Environment International, 2013, 57-58:42-49
    [20] Wu Y, Chang V W C. Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2012, 1238: 114-120
    [21] Yoo H, Washington J W, Jenkins T M, et al. Quantitative determination of perfluorochemicals and fluorotelomer alcohols in plants from biosolid-amended fields using LC/MS/MS and GC/MS[J]. Environmental Science & Technology, 2011, 45(19): 7985-7990
    [22] Wen B, Li L, Liu Y, et al. Mechanistic studies of perfluorooctanesulfonate, perfluorooctanoic acid uptake by maize (Zea mays L. cv. TY2)[J]. Plant and Soil, 2013, 370(1/2):345-354
    [23] Amigo J M, Ratola N, Alves A. Study of geographical trends of polycyclic aromatic hydrocarbons using pine needles[J]. Atmospheric Environment, 2011, 45(33): 5988-5996
    [24] Ratola N, Alves A, Santos L, et al. Pine needles as passive bio-samplers to determine polybrominateddiphenyl ethers[J]. Chemosphere, 2011, 85(2): 247-252
    [25] Chen P, Mei J, Peng P, et al. Atmospheric PCDD/F concentrations in 38 cities of China monitored with pine needles, a passive biosampler[J]. Environmental Science & Technology, 2012, 46(24): 13334-13343
    [26] Ratola N, Lacorte S, Alves A, et al. Analysis of polycyclic aromatic hydrocarbons in pine needles by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2006, 1114(2): 198-204
    [27] Ratola N, Alves A, Psillakis E. Biomonitoring of polycyclic aromatic hydrocarbons contamination in the island of crete using pine needles[J]. Water, Air, & Soil Pollution, 2010, 215(1/4): 189-203
    [28] Ahrens L, Shoeib M, Harner T, et al. Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere[J]. Environmental Science & Technology, 2011, 45(19): 8098-8105
    [29] MacDonald R W, Barrie L A, Bidleman T F, et al. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways[J]. Science of the Total Environment, 2000, 254(2/3): 93-234
    [30] Arp H P H, Niederer C, Goss K U. Predicting the partitioning behavior of various highly fluorinated compounds[J]. Environmental Science & Technology, 2006, 40(23): 7298-7304
    [31] Li J, Del V S, Schuster J, et al. Perfluorinated compounds in the Asian atmosphere[J]. Environmental Science & Technology, 2011, 45(17): 7241-7248
  • 加载中
计量
  • 文章访问数:  1002
  • HTML全文浏览数:  908
  • PDF下载数:  469
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-02-17
赵洋洋, 姚义鸣, 孙红文. 天津市松针中可挥发全(多)氟取代烷基化合物的分布[J]. 环境化学, 2014, 33(12): 2102-2108. doi: 10.7524/j.issn.0254-6108.2014.12.002
引用本文: 赵洋洋, 姚义鸣, 孙红文. 天津市松针中可挥发全(多)氟取代烷基化合物的分布[J]. 环境化学, 2014, 33(12): 2102-2108. doi: 10.7524/j.issn.0254-6108.2014.12.002
ZHAO Yangyang, YAO Yiming, SUN Hongwen. Distribution of volatile per(poly)fluoroalkyl substances in pine needles of Tianjin[J]. Environmental Chemistry, 2014, 33(12): 2102-2108. doi: 10.7524/j.issn.0254-6108.2014.12.002
Citation: ZHAO Yangyang, YAO Yiming, SUN Hongwen. Distribution of volatile per(poly)fluoroalkyl substances in pine needles of Tianjin[J]. Environmental Chemistry, 2014, 33(12): 2102-2108. doi: 10.7524/j.issn.0254-6108.2014.12.002

天津市松针中可挥发全(多)氟取代烷基化合物的分布

  • 1. 南开大学环境科学与工程学院, 教育部环境污染过程与基准教育部重点实验室, 天津, 300071
基金项目:

教育部博士点专项基金(20130031110027)与国家杰出青年基金资助(41225014)资助.

摘要: 本研究调查了天津市松针中6种可挥发PFASs的浓度水平,旨在探讨松针作为可挥发PFASs天然被动采样装置的可行性.结果表明,松针中可挥发PFASs的总浓度范围为0.43—45.69 ng·g-1(脂质),平均浓度4.92 ng·g-1(脂质),不同采样点PFASs的浓度水平存在差异.8:2氟调醇和10:2氟调醇是松针中的主要检出物,8:2氟调醇的检出率高达85%,浓度在0.23—17.46 ng·g-1(脂质)之间,10:2氟调醇全部被检出,浓度范围为0.43—28.23 ng·g-1(脂质);N-乙基全氟辛烷磺酰胺和N-乙基全氟辛烷磺酰胺基乙醇的检出率较低;而N-甲基全氟辛烷磺酰胺基乙醇和6:2氟调醇在松针中未被检出.松针中氟调醇的浓度水平随着碳链长度增加而增加.与大气被动采样器相比,松针可作为被动采样的一种形式,从一定程度上反映大气中可挥发PFASs的浓度水平.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回