基于液相色谱法分析水环境中大环内酯类抗生素污染的研究进展

章琴琴, 汪昆平, 杨林, 徐乾前, 刘苗苗. 基于液相色谱法分析水环境中大环内酯类抗生素污染的研究进展[J]. 环境化学, 2012, 31(11): 1787-1796.
引用本文: 章琴琴, 汪昆平, 杨林, 徐乾前, 刘苗苗. 基于液相色谱法分析水环境中大环内酯类抗生素污染的研究进展[J]. 环境化学, 2012, 31(11): 1787-1796.
ZHANG Qinqin, WANG Kunping, YANG Lin, XU Qianqian, LIU Miaomiao. Determination of macrolide antibiotic residues in water environment based on the liquid chromatography: A review[J]. Environmental Chemistry, 2012, 31(11): 1787-1796.
Citation: ZHANG Qinqin, WANG Kunping, YANG Lin, XU Qianqian, LIU Miaomiao. Determination of macrolide antibiotic residues in water environment based on the liquid chromatography: A review[J]. Environmental Chemistry, 2012, 31(11): 1787-1796.

基于液相色谱法分析水环境中大环内酯类抗生素污染的研究进展

Determination of macrolide antibiotic residues in water environment based on the liquid chromatography: A review

  • 摘要: 大环内酯抗生素广泛使用,在水环境中的残留越来越引起世界关注.本文综述了国内外基于液相色谱技术分析水环境中大环内酯的方法,比较不同预处理法以及分析方法的灵敏度和检出限.固相萃取法可以同时富集和净化,消耗试剂少,方便,野外操作可行,是理想的预处理技术.液相色谱串联质谱技术选择性好、特异性高、灵敏度高,可以检测浓度低于ng·L-1的目标物,是一种可靠理想的分析方法.最后对大环内酯分析研究进行了展望.
  • 加载中
  • [1] European Federation of Animal Health (FEDESA). Antibiotics use in farm animals does not threaten human health[N]. FEDESA/FEFANA Press Release, 13 July 2001[N]. Brussels, Belgium
    [2] Union of Concerned Scientists. 70 percent of all antibiotics given to healthy livestock. Press Release. 8 January 2001,Cambridge, US
    [3] González De La Huebra M J, Vincent U. Analysis of macrolide antibiotics by liquid chromatography[J]. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39(3/4): 376-398
    [4] Watkinson A J, Murby E J, Kolpin D W, et al. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water[J]. Science of The Total Environment, 2009, 407(8): 2711-2723
    [5] Gao L, Shi Y, Li W, et al. Occurrence of antibiotics in eight sewage treatment plant in Beijing, China[J]. Chemosphere, 2012,86(16):665-671
    [6] 蔡冉,蔡德山. 大环内酯抗生素市场分析[J]. 中国医药技术经济与管理,2008,2(4):13-19
    [7] Yang Y H, Fu S G, Peng H, et al. Abuse of antibiotics in China and its potential interference in determining the etiology of pediatric bacterial diseases[J]. Pediatric Infectious Disease Journal, 1993, 12(12): 986-988
    [8] Göbel A, Mcardell C S, Joss A, et al. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies[J]. Science of The Total Environment, 2007, 372(2/3): 361-371
    [9] 贾瑷,抗生素类物质的检测方法,污染特征与环境行为.北京:北京大学博士学位论文,2011
    [10] Göbel A, Thomsen A, Mcardell C S, et al. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment[J]. Environmental Science & Technology, 2005, 39(11): 3981-3989
    [11] Glassmeyer S T, Furlong E T, Kolpin D W, et al. Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination[J]. Environmental Science & Technology, 2005, 39(14): 5157-5169
    [12] Abuin S, Codony R, Compañó R, et al. Analysis of macrolide antibiotics in river water by solid-phase extraction and liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2006, 1114(1): 73-81
    [13] Kümmerer K. Antibiotics in the aquatic environment-A review-Part I[J]. Chemosphere, 2009, 75(4): 417-434
    [14] Hirsch R, Ternes T A, Haberer K, et al. Determination of antibiotics in different water compartments via liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 1998, 815(2): 213-223
    [15] Mcardell C S, Molnar E, Suter M J F, et al. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley watershed, Switzerland[J]. Environmental Science & Technology, 2003, 37(24): 5479-5486
    [16] Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225(1/2): 109-118
    [17] Andreozzi R, Raffaele M, Nicklas P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment[J]. Chemosphere, 2003, 50(10): 1319-1330
    [18] Sacher F, Lange F T, Brauch H, et al. Pharmaceuticals in groundwaters: Analytical methods and results of a monitoring program in Baden-Württemberg, Germany[J]. Journal of Chromatography A, 2001, 938(1/2): 199-210
    [19] Ye Z, Weinberg H S, Meyer M T. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry[J]. Analytical Chemistry, 2007, 79(3): 1135-1144
    [20] Hilton M J, Thomas K V. Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2003, 1015(1/2): 129-141
    [21] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999-2000: A national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6): 1202-1211
    [22] Managaki S, Murata A, Takada H, et al. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the mekong delta[J]. Environmental Science & Technology, 2007, 41(23): 8004-8010
    [23] Jiang L, Hu X, Yin D, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6): 822-828
    [24] Loganathan B, Phillips M, Mowery H, et al. Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant[J]. Chemosphere, 2009, 75(1): 70-77
    [25] Halling-Sørensen B, Nors Nielsen S, Lanzky P F, et al. Occurrence, fate and effects of pharmaceutical substances in the environment- A review[J]. Chemosphere, 1998, 36(2): 357-393
    [26] Núñez O, Moyano E, Galceran M T. LC-MS/MS analysis of organic toxics in food[J]. TrAC Trends in Analytical Chemistry, 2005, 24(7): 683-703
    [27] Kobayashi T, Suehiro F, Cach Tuyen B, et al. Distribution and diversity of tetracycline resistance genes encoding ribosomal protection proteins in Mekong river sediments in Vietnam[J]. FEMS Microbiology Ecology, 2007, 59(3): 729-737
    [28] Volkmann H, Schwartz T, Bischoff P, et al. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan)[J]. Journal of Microbiological Methods, 2004, 56(2): 277-286
    [29] Petrovic M, Hernando M D, Silvia Díaz-Cruz M S, et al. Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review[J]. Journal of Chromatography A, 2005, 1067(1/2): 1-14
    [30] 徐冰洁,罗义,周启星,等. 抗生素抗性基因在环境中的来源、传播扩散及生态风险[J]. 环境化学, 2010,30(2): 169-178
    [31] Isidori M, Lavorgna M, Nardelli A, et al. Toxic and genotoxic evaluation of six antibiotics on non-target organisms[J]. Science of the Total Environment, 2005, 346(1/3): 87-98
    [32] Mankin A S. Macrolide myths[J]. Current opinion microbiology, 2008, 11(5): 414-421
    [33] Stevens R C, Rodman J H. Pharmacokinetics of antimicrobial therapy[J]. Seminars in Pediatric Infectious Diseases, 1998, 9(4): 273-280
    [34] Rattanaumpawan P, Tolomeo P, Bilker W B, et al. Risk factors for fluoroquinolone resistance in Gram-negative bacilli causing healthcare-acquired urinary tract infections[J]. Journal of Hospital Infection, 2010, 76(4): 324-327
    [35] Erah P O, Barrett D A, Shaw P N. Ion-pair high-performance liquid chromatographic assay method for the assessment of clarithromycin stability in aqueous solution and in gastric juice[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1996, 682(1): 73-78
    [36] Nakagawa Y, Itai S, Yoshida T, et al. Physicochemical properties and stability in the acidic solution of a new macrolide antibiotic, clarithromycin, in comparison with erythromycin[J]. Chemical & Pharmaceutical Bulletin, 1992, 40(3):725-728
    [37] Tong L, Eichhorn P, Pérez S, et al. Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: Kinetics and identification of photoproducts[J]. Chemosphere, 2011, 83(3): 340-348
    [38] Lange F, Cornelissen S, Kubac D, et al. Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin[J]. Chemosphere, 2006, 65(1): 17-23
    [39] Hijosa-Valsero M, Fink G, Schlüsener M P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization[J]. Chemosphere, 2011, 83(5): 713-719
    [40] Gracia-Lor E, Sancho J V, Serrano R, et al. Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia[J]. Chemosphere, 2012, 87(5): 453-462
    [41] Rabølle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J]. Chemosphere, 2000, 40(7): 715-722
    [42] Batt A L, Bruce I B, Aga D S. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges[J]. Environmental Pollution, 2006, 142(2): 295-302
    [43] Tsai W, Chuang H, Chen H, et al. Application of dispersive liquid-liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection[J]. Analytica Chimica Acta, 2009, 656(1/2): 56-62
    [44] Schlüsener M P, Bester K. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil[J]. Environmental Pollution, 2006, 143(3): 565-571
    [45] Ingerslev F, Torng L, Loke M, et al. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems[J]. Chemosphere, 2001, 44(4): 865-872
    [46] Seifrtová M, Nováková L, Lino C, et al. An overview of analytical methodologies for the determination of antibiotics in environmental waters[J]. Analytica Chimica Acta, 2009, 649(2): 158-179
    [47] Christian T, Schneider R J, Frber H A, et al. Determination of antibiotic residues in manure, soil, and surface waters[J]. Acta hydrochimica et hydrobiologica, 2003, 31(1): 36-44
    [48] Jacobsen A M, Halling-Sørensen B, Ingerslev F, et al. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2004, 1038(1/2): 157-170
    [49] Löffler D, Ternes T A. Determination of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2003, 1021(1/2): 133-144
    [50] Hammel Y, Mohamed R, Gremaud E, et al. Multi-screening approach to monitor and quantify 42 antibiotic residues in honey by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1177(1): 58-76
    [51] Castiglioni S, Bagnati R, Calamari D, et al. A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters[J]. Journal of Chromatography A, 2005, 1092(2): 206-215
    [52] Yang S, Cha J, Carlson K. Trace analysis and occurrence of anhydroerythromycin and tylosin in influent and effluent wastewater by liquid chromatography combined with electrospray tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2006, 385(3): 623-636
    [53] Castiglioni S, Bagnati R, Calamari D, et al. A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters[J]. Journal of Chromatography A, 2005, 1092(2): 206-215
    [54] Yang S, Carlson K H. Solid-phase extraction-high-performance liquid chromatography-ion trap mass spectrometry for analysis of trace concentrations of macrolide antibiotics in natural and waste water matrices[J]. Journal of Chromatography A, 2004, 1038(1/2): 141-155
    [55] Senta I, Terzic' S, Ahel M. Simultaneous determination of sulfonamides, fluoroquinolones, macrolides and trimethoprim in wastewater and river water by LC-Tandem-MS[J]. Chromatographia, 2008, 68(9): 747-758
    [56] Pedrouzo M, Borrull F, Marcé R M, et al. Simultaneous determination of macrolides, sulfonamides, and other pharmaceuticals in water samples by solid-phase extraction and LC-(ESI) MS[J]. Journal of Separation Science, 2008, 31(12): 2182-2188
    [57] 徐维海,张干,邹世春,等. 固相萃取-液相色谱/串联质谱法分析水体中痕量抗生素[J]. 环境化学, 2006,25(2): 232-233
    [58] Abuin S, Codony R, Compa R, et al. Analysis of macrolide antibiotics in river water by solid-phase extraction and liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2006, 1114(1): 73-81
    [59] Jacobsen A M, Halling-Sørensen B, Ingerslev F, et al. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2004, 1038(1/2): 157-170
    [60] Gros M, Petrovic' M, Barceló D. Multi-residue analytical methods using LC-tandem MS for the determination of pharmaceuticals in environmental and wastewater samples: A review[J]. Analytical and Bioanalytical Chemistry, 2006, 386(4): 941-952
    [61] Nebot C, Gibb S W, Boyd K G. Quantification of human pharmaceuticals in water samples by high performance liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2007, 598(1): 87-94
    [62] Heller D N, Nochetto C B. Development of multiclass methods for drug residues in eggs: silica SPE cleanup and LC-MS/MS analysis of ionophore and macrolide residues[J]. Journal of Agricultural and Food Chemistry, 2004, 52(23): 6848-6856
    [63] Cherlet M, De Baere S, Croubels S, et al. Quantitation of tylosin in swine tissues by liquid chromatography combined with electrospray ionization mass spectrometry[J]. Analytica Chimica Acta, 2002, 473(1/2): 167-175
    [64] Leal C, Codony R, Compañó R, et al. Determination of macrolide antibiotics by liquid chromatography[J]. Journal of Chromatography A, 2001, 910(2): 285-290
    [65] Schlüsener M P, Bester K. Determination of steroid hormones, hormone conjugates and macrolide antibiotics in influents and effluents of sewage treatment plants utilising high-performance liquid chromatography/tandem mass spectrometry with electrospray and atmospheric pressure chemical ionisation[J]. Rapid Communications in Mass Spectrometry, 2005, 19(22): 3269-3278
    [66] Arthur C L, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Analytical Chemistry, 1990, 62(19): 2145-2148
    [67] Zhou S N, Oakes K D, Servos M R, et al. Application of solid-phase microextraction for in vivo laboratory and field sampling of pharmaceuticals in fish[J]. Environmental Science & Technology, 2008, 42(16): 6073-6079
    [68] Mcclure E L, Wong C S. Solid phase microextraction of macrolide, trimethoprim, and sulfonamide antibiotics in wastewaters[J]. Journal of Chromatography A, 2007, 1169(1/2): 53-62
    [69] Volmer D A, Hui J P M. Study of erythromycin A decomposition products in aqueous solution by solid-phasemicroextraction/liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 1998, 12(3): 123-129
    [70] Lord H, Pawliszyn J. Microextraction of drugs[J]. Journal of Chromatography A, 2000, 902(1): 17-63
    [71] Parker C E, Perkins J R, Tomer K B, et al. Application of nanoscale packed capillary liquid chromatography (75 μm id) and capillary zone electrophoresis/electrospray ionization mass spectrometry to the analysis of macrolide antibiotics[J]. Journal of the American Society for Mass Spectrometry, 1992, 3(5): 563-574
    [72] Kanfer I, Skinner M F, Walker R B. Analysis of macrolide antibiotics[J]. Journal of Chromatography A, 1998, 812(1/2): 255-286
    [73] Poitricia Cunniff, AoAC International. Official methods of analysis of AOAC international(16th ed.)[M]. AOAC international Arlington, VA, 1995
    [74] Zhou J, Chen Y, Cassidy R. Separation and determination of the macrolide antibiotics (erythromycin, spiramycin and oleandomycin) by capillary electrophoresis coupled with fast reductive voltammetric detection[J]. Electrophoresis, 2000, 21(7): 1349-1353
    [75] 仇雁翎,陈玲,越建夫. 饮用水水质监测与分析[M]. 北京:化学工业出版社,2006:42-25
    [76] Hernández F, Sancho J V, Ibáñez M, et al. Antibiotic residue determination in environmental waters by LC-MS[J]. TrAC Trends in Analytical Chemistry, 2007, 26(6): 466-485
    [77] García-Mayor M A, Garcinuño R M, Fernández-Hernando P, et al. Liquid chromatography-UV diode-array detection method for multi-residue determination of macrolide antibiotics in sheep's milk[J]. Journal of Chromatography A, 2006, 1122(1/2): 76-83
    [78] Omura S, Suzuki Y, Nakagawa A, et al. Fast liquid chromatography of macrolide antibiotics[J]. Journal of Antibiotics, 1973, 26(12): 794-796
    [79] Tsuji K, Goetz J F. High-performance liquid chromatographic determination of erythromycin[J]. Journal of Chromatography A, 1978, 147: 359-367
    [80] Tsuji K, Goetz J F. Elevated column temperature for the high-performance liquid chromatoraphic determination of erythromycin and erythromycin ethylsuccinate[J]. Journal of Chromatography A, 1978, 157: 185-196
    [81] Lin C, Kim H, Schuessler D, et al. High-pressure liquid chromatographic method for determination of rosaramicin in humans[J]. Antimicrobial Agents and Chemotherapy, 1980, 18(5): 780-783
    [82] Dow J, Lemar M, Frydman A, et al. Automated high-performance liquid chromatographic determination of spiramycin by direct injection of plasma, using column-switching for sample clean-up[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1985, 344: 275-283
    [83] Horie M, Saito K, Ishii R, et al. Simultaneous determination of five macrolide antibiotics in meat by high-performance liquid chromatography[J]. Journal of Chromatography A, 1998, 812(1/2): 295-302
    [84] Wilms E, Trumpie H, Veenendaal W, et al. Quantitative determination of azithromycin in plasma, blood and isolated neutrophils by liquid chromatography using pre-column derivatization with 9-fluorenylmethyloxycarbonyl-chloride and fluorescence detection[J]. Journal of Chromatography B, 2005, 814(1): 37-42
    [85] José González de la Huebra María, Bordin Guy, Rodríguez Adela Rosa. A multiresidue method for the simultaneous determination of ten macrolide antibiotics in human urine based on gradient elution liquid chromatography coupled to coulometric detection[J].Analytica Chimica Acta, 2004, 517(1/2): 53-63
    [86] Kanfer I, Skinner M F, Walker R B. Analysis of macrolide antibiotics[J]. Journal of Chromatography A, 1998, 812(1/2): 255-286
    [87] Shepard R M, Duthu G S, Ferraina R A, et al. High-performance liquid chromatographic assay with electrochemical detection for azithromycin in serum and tissues[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1991, 565(1/2): 321-337
    [88] Takino M, Yamaguchi K, Nakahara T. Determination of carbamate pesticide residues in vegetables and fruits by liquid chromatography atmospheric pressure photoionization-mass spectrometry and atmospheric pressure chemical ionization-mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2004, 52(4): 727-735
    [89] Horie Masakazu,Takegami Harumi, Toya Kazuo, et al Determination of macrolide antibiotics in meat and fish by liquid chromatography-electrospray mass spectrometry[J]. Analytica Chimica Acta, 2003, 492(1/2): 187-197
    [90] Karthikeyan K G, Meyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA[J]. Science of The Total Environment, 2006, 361(1/3): 196-207
    [91] Dams R, Huestis M A, Lambert W E, et al. Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid[J]. Journal of the American Society for Mass Spectrometry, 2003, 14(11): 1290-1294
    [92] Benijts T, Dams R, Lambert W, et al. Countering matrix effects in environmental liquid chromatography-electrospray ionization tandem mass spectrometry water analysis for endocrine disrupting chemicals[J]. Journal of Chromatography A, 2004, 1029(1/2): 153-159
    [93] Gomes R L, Avcioglu E, Scrimshaw M D, et al. Steroid-estrogen determination in sediment and sewage sludge: A critique of sample preparation and chromatographic/mass spectrometry considerations, incorporating a case study in method development[J]. TrAC Trends in Analytical Chemistry, 23(10/11): 737-744
    [94] Souverain S, Rudaz S, Veuthey J. Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures[J]. Journal of Chromatography A, 2004, 1058(1/2): 61-66
    [95] Hedenmo M, Eriksson B. Liquid chromatographic determination of the macrolide antibiotics roxithromycin and clarithromycin in plasma by automated solid-phase extraction and electrochemical detection[J]. Journal of Chromatography A, 1995, 692(1/2): 161-166
    [96] Göbel A, Mcardell C S, Suter M J F, et al. Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry[J]. Analytical Chemistry, 2004, 76(16): 4756-4764
    [97] Göbel A, Thomsen A, Mcardell C S, et al. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment[J]. Environmental Science & Technology. 2005, 39(11): 3981-3989
    [98] Miao X, Bishay F, Chen M, et al. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada[J]. Environmental Science & Technology, 2004, 38(13): 3533-3541
    [99] Gros M, Petrovic M, Barcel D. Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters[J]. Talanta, 2006, 70(4): 678-690
    [100] Lopez De Alda M J, Díaz-Cruz S, Petrovic M, et al. Liquid chromatography-(tandem) mass spectrometry of selected emerging pollutants (steroid sex hormones, drugs and alkylphenolic surfactants) in the aquatic environment[J]. Journal of Chromatography A, 2003, 1000(1/2): 503-526
    [101] Díaz-Cruz M S, Barceló D. LC-MS2 trace analysis of antimicrobials in water, sediment and soil[J]. TrAC Trends in Analytical Chemistry, 2005, 24(7): 645-657
    [102] 李笃信,唐涛,王风云,等. 超高压液相色谱仪的研究进展及超高压引起的相关问题[J].色谱, 2008.26(1):105-109
  • 加载中
计量
  • 文章访问数:  1145
  • HTML全文浏览数:  1020
  • PDF下载数:  1045
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-08-25
章琴琴, 汪昆平, 杨林, 徐乾前, 刘苗苗. 基于液相色谱法分析水环境中大环内酯类抗生素污染的研究进展[J]. 环境化学, 2012, 31(11): 1787-1796.
引用本文: 章琴琴, 汪昆平, 杨林, 徐乾前, 刘苗苗. 基于液相色谱法分析水环境中大环内酯类抗生素污染的研究进展[J]. 环境化学, 2012, 31(11): 1787-1796.
ZHANG Qinqin, WANG Kunping, YANG Lin, XU Qianqian, LIU Miaomiao. Determination of macrolide antibiotic residues in water environment based on the liquid chromatography: A review[J]. Environmental Chemistry, 2012, 31(11): 1787-1796.
Citation: ZHANG Qinqin, WANG Kunping, YANG Lin, XU Qianqian, LIU Miaomiao. Determination of macrolide antibiotic residues in water environment based on the liquid chromatography: A review[J]. Environmental Chemistry, 2012, 31(11): 1787-1796.

基于液相色谱法分析水环境中大环内酯类抗生素污染的研究进展

  • 1. 重庆大学城市建设与环境工程学院, 重庆, 400030

摘要: 大环内酯抗生素广泛使用,在水环境中的残留越来越引起世界关注.本文综述了国内外基于液相色谱技术分析水环境中大环内酯的方法,比较不同预处理法以及分析方法的灵敏度和检出限.固相萃取法可以同时富集和净化,消耗试剂少,方便,野外操作可行,是理想的预处理技术.液相色谱串联质谱技术选择性好、特异性高、灵敏度高,可以检测浓度低于ng·L-1的目标物,是一种可靠理想的分析方法.最后对大环内酯分析研究进行了展望.

English Abstract

参考文献 (102)

返回顶部

目录

/

返回文章
返回