长江口及邻近海域溶解铋的分布变化特征及影响因素

吴晓丹, 宋金明, 李学刚, 袁华茂, 李宁. 长江口及邻近海域溶解铋的分布变化特征及影响因素[J]. 环境化学, 2012, 31(11): 1741-1749.
引用本文: 吴晓丹, 宋金明, 李学刚, 袁华茂, 李宁. 长江口及邻近海域溶解铋的分布变化特征及影响因素[J]. 环境化学, 2012, 31(11): 1741-1749.
WU Xiaodan, SONG Jinming, LI Xuegang, YUAN Huamao, LI Ning. Distribution of dissolved bismuth in the Yangtze River Estuary and its adjacent waters[J]. Environmental Chemistry, 2012, 31(11): 1741-1749.
Citation: WU Xiaodan, SONG Jinming, LI Xuegang, YUAN Huamao, LI Ning. Distribution of dissolved bismuth in the Yangtze River Estuary and its adjacent waters[J]. Environmental Chemistry, 2012, 31(11): 1741-1749.

长江口及邻近海域溶解铋的分布变化特征及影响因素

  • 基金项目:

    国家重点基础研究973项目课题(2011CB403602)和国家基金委"创新研究群体科学基金"(41121064)项目资助.

Distribution of dissolved bismuth in the Yangtze River Estuary and its adjacent waters

  • Fund Project:
  • 摘要: 利用氢化物发生原子荧光光谱法测定了长江口及邻近海域水体中溶解铋的含量,探讨了海水中溶解铋的分布特征、可能来源及影响因素.结果表明,在表、底两层水体中溶解铋含量分别为0.007-0.086 nmol·L-1和0.007-0.025 nmol·L-1,平均值分别为0.033 nmol·L-1和0.014 nmol·L-1.在空间分布上,表层水体中的溶解铋具有明显的梯度变化,在长江冲淡水所及区域含量较低.而在杭州湾及其同纬度地区的高值区可能是由于钱塘江等河流的输入及海水的平流作用引起.温度和盐度分布特征可以反映研究区域水团输入特征,研究表明,溶解铋含量与盐度呈显著负相关,而与温度呈正相关关系,进一步印证了水团输入对溶解铋空间分布的影响,同时也说明河口地区溶解铋在一定盐度范围内的行为是保守的,在河口地区并未发生明显转移.溶解铋除了受沿岸水体输入影响外,吸附-解吸附过程也是影响其分布的重要因素.研究显示,溶解氧、温度和pH是控制铋在颗粒物中吸附-解吸过程的主要环境因素,它们通过控制溶解度和吸附作用来影响水体中溶解铋的分布和地球化学行为.
  • 加载中
  • [1] Das A K, Chakraborty R, Cervera M L, et al. Analytical techniques for the determination of bismuth in solid environmental samples[J]. Trac-trend Anal Chem, 2006, 25(6):599-608
    [2] 杨楠,孙红哲. 砷,锑,铋类药物的应用历史和现状[J]. 化学进展, 2009, 21(5):857-865
    [3] 张正斌,刘莲生. 海洋化学[M]. 济南:山东教育出版社,2004
    [4] Cutter G A, Cutter L S. Behavior of dissolved antimony, arsenic, and selenium in the Atlantic Ocean[J]. Mar Chem, 1995, 49(4):295-306
    [5] Wu X D, Song J M, Li X G, et al. Behaviors of dissolved antimony in the Yangtze River Estuary and its adjacent waters[J]. J Environ Monitor, 2011, 13, 2292-2303
    [6] 胡明辉,刘道礼,杨逸萍. 海洋中硒的双箱模式及地球化学特性[J]. 厦门大学学报:自然科学版, 1988, 27(1):93-97
    [7] 庞智勇,冯流,周俊丽,等. 长江口水体中取代芳烃类污染物的生态风险评价[J]. 环境化学, 2011, 30(2):430-434
    [8] Shaw P T. Shelf circulation off the southeast coast of China[J]. Rev Aquat Sci, 1992, 6(1):1-28
    [9] 宁修仁,史君贤,蔡昱明,等. 长江口和杭州湾海域生物生产力锋面及其生态学效应[J]. 海洋学报,2004, 26(6):96-106
    [10] Milliman J D, Shen H T, Yang Z S, et al. Transport and deposition of river sediment in the Changjiang Estuary and adjacent continental-shelf[J]. Cont Shelf Res, 1985, 4(1-2):37-45
    [11] Chen J Y, Li D J, Chen B L, et al. The processes of dynamic sedimentation in the Changjiang Estuary[J]. J Sea Res, 1999, 41(1-2):129-140
    [12] Cutter G A. Dissolved arsenic and antimony in the Black-Sea[J]. Deep-Sea Res PT I, 1991, 38:S825-S843
    [13] Yao Q Z, Zhang J, Qin X G, et al. The behavior of selenium and arsenic in the Zhujiang (Pearl River) Estuary, South China Sea[J]. Estuar Coast Shelf S, 2006, 67(1-2):170-180
    [14] Reyes M N M, Cervera M L, Guardia M de la. Determination of total Sb, Se, Te, and Bi and evaluation of their inorganic species in garlic by hydride-generation-atomic-fluorescence spectrometry[J]. Anal and Bioanal Chem, 2009, 394(6):1557-1562
    [15] Wu H, Du B X, Fang C. Flow injection on-line preconcentration coupled with hydride generation atomic fluorescence spectrometry for ultra-trace amounts of bismuth determination in biological and environmental water samples[J]. Anal Lett, 2007, 40(14):2772-2782
    [16] Takeda K, K Fujiwara. Determination of nitrate in natural-waters with the photoinduced conversion of nitrate to nitrite[J]. Anal Chim Acta, 1993, 276(1):25-32
    [17] Song J M. Chemistry of sediment-sea water interface of China Seas[M]. Beijing: China Ocean Press, 1997
    [18] Song J M. Biogeochemical processes of biogenic elements in China Marginal Seas[M]. New York & Hangzhou:Springer-Verlag GmbH & Zhejiang University Press, 2009
    [19] Strickland J D H, Parsons T R. A practical handbook of seawater analysis (2nd ed)[M]. Bull Fish Res Bd Can, 1972: 167
    [20] Capelli R, Drava G, De Pellegrini R, et al. Study of trace elements in organs and tissues of striped dolphins (Stenella coeruleoalba) found dead along the Ligurian coasts (Italy)[J]. Adv in Environ Res, 2000, 4(1):31-43
    [21] Kim J P. Methylmercury in rainbow-trout (Oncorhynchus mykiss) from Lakes Okareka, Okaro, Rotomahana, Rotorua and Tarawera, North Island, New Zealand[J]. Sci Total Environ, 1995, 164(3):209-219
    [22] Lares M L, Flores-Munoz G, Lara-Lara R. Temporal variability of bioavailable Cd, Hg, Zn, Mn and Al in an upwelling regime[J]. Environ Pollut, 2002, 120(3):595-608
    [23] Szefer P, Frelek K, Szefer K, et al. Distribution and relationships of trace metals in soft tissue, byssus and shells of Mytilus edulis trossulus from the southern Baltic[J]. Environ Pollut, 2002, 120(2):423-444
    [24] Chen C T A, Ruo R, Paid S C, et al. Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan[J]. Contl Shelf Res, 1995, 15(1):19-39
    [25] Zhang J, Liu S M, Ren J L, et al. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf[J]. Prog Oceanogr, 2007, 74(4):449-478
    [26] 王保栋. 黄海和东海营养盐分布及其对浮游植物的限制[J]. 应用生态学报, 2003, 14(7):1122-1126
    [27] Beardsley R C, Limeburner R, Yu H, et al. Discharge of the Changjiang (Yangtze River) into the East China Sea[J]. Cont Shelf Res, 1985, 4(1-2):57-76
    [28] Ren J L, Zhang J, Li D D, et al. Behavior of dissolved inorganic arsenic in the Yellow Sea and East China Sea[J]. Deep-Sea Res PT Ⅱ, 2010, 57(11-12):1035-1046
    [29] 王保栋,刘峰. 南黄海溶解氧的平面分布及其季节变化[J]. 海洋学报, 1999, 21(4):47-53
    [30] Abdullah M I, Shiyu Z, Mosgren K. Arsenic and selenium species in the oxic and anoxic waters of the Oslofjord, Norway[J]. Mar Pollut Bull, 1995, 31(1-3):116-126
    [31] Conde J E, Alaejos M S. Selenium concentrations in natural and environmental waters[J]. Chem Rev, 1997, 97(6):1979-2003
    [32] 赵保仁,任广法. 长江口上升流海区的生态环境特征[J]. 海洋与湖沼, 2001, 32(3):327-333
    [33] Gao Y Z, He J Z, Ling W T, et al. Effects of organic acids on copper and cadmium desorption from contaminated soils[J]. Environ Int, 2003, 29(5):613-618
    [34] 孙卫玲,邓宝山. pH 对铜在黄土中吸持及其形态的影响[J]. 环境科学, 2001, 22(003):78-83
    [35] Zhou D M, Chen H M, Wang S Q, et al. Effects of organic acids, o-phenylenediamine and pyrocatechol on cadmium adsorption and desorption in soil[J]. Water Air Soil Pollut, 2003, 145(1):109-121
    [36] 徐明岗,李菊梅,张青. pH 对黄棕壤重金属解吸特征的影响[J]. 生态环境, 2004, 13(3):312-315
    [37] Wilson N, Webster-Brown J. The fate of antimony in a major lowland river system, the Waikato River, New Zealand[J]. App Geochem, 2009, 24(12):2283-2292
    [38] 沈焕庭,贺松林,茅志昌,等. 中国河口最大浑浊带刍议[J].泥沙研究, 2001, 1:23-29
    [39] 章骅,何品晶,吕凡,等. 重金属在环境中的化学形态分析研究进展[J]. 环境化学, 2011, 30(1):130-137
    [40] 石晓勇,王修林,陆茸,等. 东海赤潮高发区春季溶解氧和pH分布特征及影响因素探讨[J]. 海洋与湖沼, 2005, 36(5):404-412
    [41] 温婷婷. 黄东海营养盐分布特征以及台湾东北部冷涡上升流的初步研究[D]. 青岛:中国海洋大学硕士学位论文,2005
  • 加载中
计量
  • 文章访问数:  855
  • HTML全文浏览数:  827
  • PDF下载数:  474
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-01-11
吴晓丹, 宋金明, 李学刚, 袁华茂, 李宁. 长江口及邻近海域溶解铋的分布变化特征及影响因素[J]. 环境化学, 2012, 31(11): 1741-1749.
引用本文: 吴晓丹, 宋金明, 李学刚, 袁华茂, 李宁. 长江口及邻近海域溶解铋的分布变化特征及影响因素[J]. 环境化学, 2012, 31(11): 1741-1749.
WU Xiaodan, SONG Jinming, LI Xuegang, YUAN Huamao, LI Ning. Distribution of dissolved bismuth in the Yangtze River Estuary and its adjacent waters[J]. Environmental Chemistry, 2012, 31(11): 1741-1749.
Citation: WU Xiaodan, SONG Jinming, LI Xuegang, YUAN Huamao, LI Ning. Distribution of dissolved bismuth in the Yangtze River Estuary and its adjacent waters[J]. Environmental Chemistry, 2012, 31(11): 1741-1749.

长江口及邻近海域溶解铋的分布变化特征及影响因素

  • 1.  中国科学院海洋研究所, 海洋生态与环境科学重点实验室, 青岛, 266071;
  • 2.  中国科学院大学, 北京, 100049
基金项目:

国家重点基础研究973项目课题(2011CB403602)和国家基金委"创新研究群体科学基金"(41121064)项目资助.

摘要: 利用氢化物发生原子荧光光谱法测定了长江口及邻近海域水体中溶解铋的含量,探讨了海水中溶解铋的分布特征、可能来源及影响因素.结果表明,在表、底两层水体中溶解铋含量分别为0.007-0.086 nmol·L-1和0.007-0.025 nmol·L-1,平均值分别为0.033 nmol·L-1和0.014 nmol·L-1.在空间分布上,表层水体中的溶解铋具有明显的梯度变化,在长江冲淡水所及区域含量较低.而在杭州湾及其同纬度地区的高值区可能是由于钱塘江等河流的输入及海水的平流作用引起.温度和盐度分布特征可以反映研究区域水团输入特征,研究表明,溶解铋含量与盐度呈显著负相关,而与温度呈正相关关系,进一步印证了水团输入对溶解铋空间分布的影响,同时也说明河口地区溶解铋在一定盐度范围内的行为是保守的,在河口地区并未发生明显转移.溶解铋除了受沿岸水体输入影响外,吸附-解吸附过程也是影响其分布的重要因素.研究显示,溶解氧、温度和pH是控制铋在颗粒物中吸附-解吸过程的主要环境因素,它们通过控制溶解度和吸附作用来影响水体中溶解铋的分布和地球化学行为.

English Abstract

参考文献 (41)

返回顶部

目录

/

返回文章
返回