复合固定化法固定微生物去除芘

李婧, 党志, 郭楚玲, 卢桂宁, 卢静. 复合固定化法固定微生物去除芘[J]. 环境化学, 2012, 31(7): 1036-1042.
引用本文: 李婧, 党志, 郭楚玲, 卢桂宁, 卢静. 复合固定化法固定微生物去除芘[J]. 环境化学, 2012, 31(7): 1036-1042.
LI Jing, DANG Zhi, GUO Chuling, LU Guining, LU Jing. Removal of pyrene using immobilized microorganism[J]. Environmental Chemistry, 2012, 31(7): 1036-1042.
Citation: LI Jing, DANG Zhi, GUO Chuling, LU Guining, LU Jing. Removal of pyrene using immobilized microorganism[J]. Environmental Chemistry, 2012, 31(7): 1036-1042.

复合固定化法固定微生物去除芘

  • 基金项目:

    广东省自然科学基金项目(9351064101000001)

    广州市环保局科技成果应用示范项目

    广州市珠江新星项目资助.

Removal of pyrene using immobilized microorganism

  • Fund Project:
  • 摘要: 通过"玉米秸秆吸附-包埋-交联"复合固定化方法固定多环芳烃降解菌GY2B和GP3B,提高对芘的降解性能,并对其作用过程进行初步研究.结果表明,游离态单细菌GY2B、GP3B和混合菌GY2B+GP3B的7 d降解率分别为14.0%、55.0%和73.6%,而固定化GY2B+GP3B秸秆小球在5 d内即达98.2%,去除率得到了显著的提高;对固定化微生物小球的比表面积、孔隙率和扫描电镜图分析,说明载体表面具有较高的比表面积,内部是具有大量孔隙的骨架结构,在内部生长的微生物和基质有充分的接触面积和机会;固定化GY2B+GP3B秸秆小球类似于一个吸附降解一体化的微型反应器.GY2B+GP3B混合菌芘代谢产物有菲-4-羧酸、二甲基酞酸、1-羟基-2-萘酸、1-萘酚和水杨酸,推测芘的降解是GY2B+GP3B混合菌集体代谢的综合作用的结果,GP3B的中间转化产物作为GY2B生长代谢的基质,使得芘得到更完全的降解.
  • 加载中
  • [1] Peng R, Xiong A, Xue Y, et al. Microbial biodegradation of polyaromatic hydrocarbons[J]. FEMS Microbiology Reviews, 2008, 32(6): 927-955
    [2] Martorell I, Perelló G, Martí-Cid R, et al. Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend[J]. Journal of Food Protection, 2010, 36(5): 424-432
    [3] Somtrakoon K, Suanjit S, Pokethitiyook P, et al. Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp. VUN10013[J]. World Journal of Microbiology and Biotechnology. 2008, 24(4): 523-531
    [4] 曲洋,张培玉,郭沙沙,等. 复合固定化法固定化微生物技术在污水生物处理中的研究应用[J]. 四川环境, 2009, 28(3): 78-84
    [5]
    [6] 陈晓鹏,易筱筠,陶雪琴,等. 石油污染土壤中芘高效降解菌群的筛选及降解特性研究[J]. 环境工程学报, 2008, 2(3): 413-417
    [7] Tao X, Lu G, Dang Z, et al. A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils[J]. Process Biochemistry, 2007, 42(3): 401-408
    [8] Wang Y, Yang X, Tu W, et al. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate[J]. Journal of Microbiological Methods, 2007, 68(2): 212-217
    [9] 白雪,周林成,李彦锋,等. 聚乙烯醇载体制备及其固定化微生物处理污水研究进展[J]. 离子交换与吸附, 2010, 26(4): 377-384
    [10]
    [11] Yang S, Jin H, Wei Z, et al. Bioremediation of oil spills in cold environments: A review[J]. Pedosphere, 2009, 19(3): 371-381
    [12] Cerniglia C E. Biodegradation of polycyclic aromatic hydrocarbons[J]. Biodegradation, 1992, 3(2): 351-368
    [13] Romero M C, Salvioli M L, Cazau M C, et al. Pyrene degradation by yeasts and filamentous fungi[J]. Environmental Pollution, 2002, 117(1): 159-163
    [14] Li X, Cullen W R, Reimer K J, et al. Microbial degradation of pyrene and characterization of a metabolite[J]. Science of the Total Environment, 1996, 177(1-3): 17-29
    [15] Prabhu Y, Phale P S. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation [J]. Applied Microbiology and Biotechnology, 2003, 61(4): 342-351
    [16] Dean-Ross D, Cerniglia C E. Degradation of pyrene by Mycobacterium flavescens [J]. Appl Microbiol Biotechnol. 1996, 46: 307-312
    [17] 陶雪琴,卢桂宁,易筱筠,等. 菲高效降解菌的筛选及其降解中间产物分析[J]. 农业环境科学学报, 2006, 25(1): 190-195
    [18] Kim S, Kweon O, Jones R C, et al. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology[J]. J Bacteriol, 2007, 189(2): 464-472
  • 加载中
计量
  • 文章访问数:  941
  • HTML全文浏览数:  902
  • PDF下载数:  335
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-02-25
李婧, 党志, 郭楚玲, 卢桂宁, 卢静. 复合固定化法固定微生物去除芘[J]. 环境化学, 2012, 31(7): 1036-1042.
引用本文: 李婧, 党志, 郭楚玲, 卢桂宁, 卢静. 复合固定化法固定微生物去除芘[J]. 环境化学, 2012, 31(7): 1036-1042.
LI Jing, DANG Zhi, GUO Chuling, LU Guining, LU Jing. Removal of pyrene using immobilized microorganism[J]. Environmental Chemistry, 2012, 31(7): 1036-1042.
Citation: LI Jing, DANG Zhi, GUO Chuling, LU Guining, LU Jing. Removal of pyrene using immobilized microorganism[J]. Environmental Chemistry, 2012, 31(7): 1036-1042.

复合固定化法固定微生物去除芘

  • 1.  华南理工大学环境科学与工程学院, 广州, 510006;
  • 2.  工业聚集区污染控制与生态修复教育部重点实验室, 广州, 510006;
  • 3.  纸浆造纸工程国家重点实验室, 广州, 510640
基金项目:

广东省自然科学基金项目(9351064101000001)

广州市环保局科技成果应用示范项目

广州市珠江新星项目资助.

摘要: 通过"玉米秸秆吸附-包埋-交联"复合固定化方法固定多环芳烃降解菌GY2B和GP3B,提高对芘的降解性能,并对其作用过程进行初步研究.结果表明,游离态单细菌GY2B、GP3B和混合菌GY2B+GP3B的7 d降解率分别为14.0%、55.0%和73.6%,而固定化GY2B+GP3B秸秆小球在5 d内即达98.2%,去除率得到了显著的提高;对固定化微生物小球的比表面积、孔隙率和扫描电镜图分析,说明载体表面具有较高的比表面积,内部是具有大量孔隙的骨架结构,在内部生长的微生物和基质有充分的接触面积和机会;固定化GY2B+GP3B秸秆小球类似于一个吸附降解一体化的微型反应器.GY2B+GP3B混合菌芘代谢产物有菲-4-羧酸、二甲基酞酸、1-羟基-2-萘酸、1-萘酚和水杨酸,推测芘的降解是GY2B+GP3B混合菌集体代谢的综合作用的结果,GP3B的中间转化产物作为GY2B生长代谢的基质,使得芘得到更完全的降解.

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回