臭氧和基于臭氧的高级氧化工艺降解农药的研究进展

刘超, 强志民, 张涛, 张忠国. 臭氧和基于臭氧的高级氧化工艺降解农药的研究进展[J]. 环境化学, 2011, 30(7): 1225-1235.
引用本文: 刘超, 强志民, 张涛, 张忠国. 臭氧和基于臭氧的高级氧化工艺降解农药的研究进展[J]. 环境化学, 2011, 30(7): 1225-1235.
LIU Chao, QIANG Zhimin, ZHANG Tao, ZHANG Zhongguo. DEGRADATION OF PESTICIDES BY OZONE AND OZONE-BASED ADVANCED OXIDATION PROCESSES: STATE-OF-THE-ART[J]. Environmental Chemistry, 2011, 30(7): 1225-1235.
Citation: LIU Chao, QIANG Zhimin, ZHANG Tao, ZHANG Zhongguo. DEGRADATION OF PESTICIDES BY OZONE AND OZONE-BASED ADVANCED OXIDATION PROCESSES: STATE-OF-THE-ART[J]. Environmental Chemistry, 2011, 30(7): 1225-1235.

臭氧和基于臭氧的高级氧化工艺降解农药的研究进展

  • 基金项目:

    国家科技支撑项目(2006BAJ08B02)

    国家863项目(2008AA06A414)

    环境水质学国家重点实验室开放基金项目(10K07ESPCR)资助.

DEGRADATION OF PESTICIDES BY OZONE AND OZONE-BASED ADVANCED OXIDATION PROCESSES: STATE-OF-THE-ART

  • Fund Project:
  • 摘要: 由于农药的环境持久性以及毒性,饮用水源中的农药微污染日益受到水处理行业的关注.在众多水处理工艺中,由于其高效氧化去除有机污染物及控制嗅味等特点,臭氧及其相关高级氧化技术的应用已日趋广泛.本文综述了这些氧化技术对多类代表性农药(包括有机氯、有机磷、氨基甲酸酯、氯乙酰胺和三嗪等)的降解效能,详细讨论了农药的降解效率、反应动力学、降解副产物的分析鉴定及可能的反应途径,并评估了降解副产物的毒性,以期为饮用水源遭受农药微污染时的处理工艺选择与优化提供有益参考.
  • 加载中
  • [1] Schwarzenbach R P, Escher B I, Fenner K, et al. The challenge of micropollutants in aquatic systems [J]. Science, 2006, 313(5790): 1072-1077
    [2] Barbash J E, Thelin G P, Kolpin D W, et al. Major herbicides in ground water: Results from the national water-quality assessment [J]. J Environ Qual, 2001, 30(3): 831-845
    [3] Clark G M, Goolsby D A, Battaglin W A. Seasonal and annual load of herbicides from the Mississippi River basin to the gulf of Mexico [J]. Environ Sci Technol, 1999, 33(7): 981-986
    [4] Kolpin D W, Thurman E M, Linhart S M. Finding minimal herbicide concentrations in ground Water? Try looking for their degradates [J]. Sci Total Environ, 2000, 248(2-3): 115-122
    [5] Phillips P J, Bode R W. Pesticides in surface water runoff in south-eastern New York State, USA: Seasonal and stormflow effects on concentrations [J]. Pest Manag Sci, 2004, 60(6): 531-543
    [6] Rebich R A, Coupe R H, Thuman E M. Herbicide concentrations in the Mississippi River basin-the importance of chloroacetanilide herbicide degradates [J]. Sci Total Environ, 2004, 321(1-3): 189-199
    [7] Schiff K, Sutula M. Organophosphorus pesticides in storm-water runoff from southern California [J]. Environ Toxicol Chem, 2004, 23(8): 1815-1821
    [8] Scribner E A, Thurman E M, Zimmerman L R. Analysis of selected herbicide metabolites in surface and ground water of the United States [J]. Sci Total Environ, 2000, 248(2-3): 157-167
    [9] Squillace P L, Scott J C, Moran M J, et al. VOCs, pesticides, nitrate, and their mixtures in groundwater used for drinking water in the United States [J]. Environ Sci Technol, 2002, 36(9): 1923-1930
    [10] 刘超,强志民,田芳,等. 多类农药与紫外光、臭氧和高锰酸钾的反应活性研究[J]. 环境科学, 2009, 30(1): 127-133
    [11] 田芳,强志民,刘超,等. 含氯消毒剂与多类农药的反应活性研究[J]. 环境工程学报, 2008, 2: 875-879
    [12] Haag W R, Yao C C D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants [J]. Environ Sci Technol, 1992, 26(5): 1005-1013
    [13] Battaglin W, Fairchild J. Potential toxicity of pesticides measured in Midwestern streams to aquatic organisms [J]. Water Sci Technol, 2002, 45(9): 95-102
    [14] Verstraeten I M, Thurman E M, Lindsey M E, et al. Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply [J]. J Hydrol, 2002, 266(3-4): 190-208
    [15] Evgenidou E, Konstantinou I, Fytianos K, et al. Study of the removal of dichlorvos and dimethoate in a titanium dioxide mediated photocatalytic process through the examination of intermediates and the reaction mechanism [J]. J Hazard Mater, 2006, B137(2): 1056-1064
    [16] Liu C, Qiang Z, Adams C, et al. Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment [J]. Water Res, 2009, 43(14): 3435-3442
    [17] Kiely T, Donaldson D, Grube A. U.S. EPA Pesticide Industry Sales and Usage: 2000 and 2001 Market Estimates. In U.S. Environmental Protection Agency Ed Washington DC, 2004
    [18] von Gunten U. Ozonation of drinking water: part I. Oxidation kinetics and product formation [J]. Water Res, 2003, 37(7): 1443-1467
    [19] von Gunten U. Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine [J]. Water Res, 2003, 37(7): 1469-1487
    [20] Hoigné J, Bader H. The role of hydroxyl radical reactions in ozonation processes in aqueous solution [J]. Water Res, 1976, 10(5): 377-386
    [21] Qiang Z, Adams C, Surampalli R. Determination of ozonation rate constants for lincomycin and spectinomycin [J]. Ozone Sci Eng, 2004, 26(6): 525-537
    [22] Staehelin J, Hoigné J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide [J]. Environ Sci Technol, 1982, 16(10): 676-681
    [23] Elovitz M S, von Gunten U. Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept [J]. Ozone Sci Eng, 1999, 21(3): 239-260
    [24] Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment [J]. Chem Rev, 1993, 93(2): 671-698
    [25] Roche P, Prados M. Removal of pesticides by use of ozone or hydrogen peroxide ozone [J]. Ozone Sci Eng, 1995, 17(6): 657-672
    [26] Ormad M P, Miguel N, Claver A, et al. Pesticides removal in the process of drinking water production [J]. Chemosphere, 2008, 71(1): 97-106
    [27] Yao C C D, Haag W R. Rate constants of direct ozone reactions with several drinking water contaminants [J]. Water Res, 1991, 25(7): 761-773
    [28] Reynolds G, Graham N, Perry R, et al. Aqueous ozonation of pesticides-a review [J]. Ozone Sci Eng, 1989, 11(4): 339-382
    [29] Ormad P, Puig A, Sarasa J, et al. Ozonation of waste-water resulting from the production of organochlorine plaguicides derived from DDT and trichlorobenzene [J]. Ozone Sci Eng, 1994, 16(6): 487-503
    [30] Meijers R T, Oderwald Muller E J, Nuhn P, et al. Degradation of pesticides by ozonation and advanced oxidation [J]. Ozone Sci Eng, 1995, 17(6): 673-686
    [31] Ohashi N, Tsuchiya Y, Sasano H, et al. Screening on reactivity of organic pesticides with ozone in water and their products [J]. Jpn J Toxicol Environ Health, 1993, 39(6): 522-533
    [32] Ohashi N, Tsuchiya Y, Sasano H, et al. Ozonation products of organophosphorous pesticides in water [J]. Jpn J Toxicol Environ Health, 1994, 40(2): 185-192
    [33] Real F J, Benitez F J, Acero J L, et al. Removal of diazinon by various advanced oxidation processes [J]. J Chem Technol Biotechnol, 2007, 82(6): 566-574
    [34] Kim B S, Fujita H, Sakai Y, et al. Catalytic ozonation of an organophosphorus pesticide using microporous silicate and its effect on total toxicity reduction [J]. Water Sci Technol, 2002, 46(4-5): 35-41
    [35] Ku Y, Lin H S. Decomposition of phorate in aqueous solution by photolytic ozonation [J]. Water Res, 2002, 36(16): 4155-4159
    [36] Mason Y Z, Chospen E, Ravacha C. Carbamate insecticides: removal from water by chlorination and ozonation [J]. Water Res, 1990, 24(1): 11-21
    [37] Hu J Y, Morita T, Magara Y, et al. Evaluation of reactivity of pesticides with ozone in water using the energies of frontier molecular orbitals [J]. Water Res, 2000, 34(8): 2215-2222
    [38] Benitez F J, Acero J L, Real F J. Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes [J]. J Hazard Mater, 2002, B89(1): 51-65
    [39] Benitez F J, Beltran-Heredia J, Gonzllez T. Kinetic study of propoxur oxidation by UV radiation and combined O3/UV radiation [J]. Ind Eng Chem Res, 1994, 33(5): 1264-1270
    [40] Qiang Z, Liu C, Dong B, et al. Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process [J]. Chemosphere, 2010, 78(5): 517-526
    [41] Beltrán F, Acedo B, Rivas J. Use of ozone to remove alachlor from surface water [J]. Bull Environ Contam Toxicol, 1999, 62(3): 324-329
    [42] Beltrán F, Acedo B, Rivas J. Use of ozone and hydrogen peroxide to remove alachlor from surface water [J]. Bull Environ Contam Toxicol, 1999, 63(1): 9-14
    [43] Beltrán F, Acedo B, Rivas J, et al. Comparison of different treatments for alachlor removal from water [J]. Bull Environ Contam Toxicol, 2000, 65(5): 668-674
    [44] Hladik M L, Roberts A L, Bouwer E J. Removal of neutral chloroacetamide herbicide degradates during simulated unit processes for drinking water treatment [J]. Water Res, 2005, 39(20): 5033-5044
    [45] Somich C J, Kearney P C, Muldoon M T, et al. Enhanced soil degradation of alachlor by treatment with ultraviolet light and ozone [J]. J Agr Food Chem, 1988, 36(6): 1322-1326
    [46] Acero J L, Benitez F J, Real F J, et al. Oxidation of acetamide herbicides in natural waters by ozone and by the combination of ozone/hydrogen peroxide: kinetic study and process modeling [J]. Ind Eng Chem Res, 2003, 42(23): 5762-5769
    [47] Upham B L, Boddy B, Xing X, et al. Non-genotoxic effects of selected pesticides and their disinfection by-products on gap junctional intercellular communication [J]. Ozone Sci Eng, 1997, 19(4): 351-369
    [48] Beltrán F J, García-Araya J F, Acedo B. Advanced oxidation of atrazine in water-1. Ozonation [J]. Water Res, 1994, 28(10): 2153-2164
    [49] Beltrán F J, García-Araya J F, Acedo B. Advanced oxidation of atrazine in water-2. Ozonation combined with ultraviolet radiation [J]. Water Res, 1994, 28(10): 2165-2174
    [50] Hapeman-Somich C J, Zong G, Lusby W R, et al. Aqueous ozonation of atrazine: Product identification and description of the degradation pathway [J]. J Agr Food Chem, 1992, 40(11): 2294-2298
    [51] Adams C D, Randtke S J. Ozonation byproducts of atrazine in synthetic and natural waters [J]. Environ Sci Technol, 1992, 26(11): 2218-2227
    [52] Acero J L, Stemmler K, von Gunten U. Degradation kinetics of atrazine and its degradation products with ozone and OH radicals: A predictive tool for drinking water treatment [J]. Environ Sci Technol, 2000, 34(4): 591-597
    [53] Nélieu S, Kerhoas L, Einhorn J. Degradation of atrazine into ammeline by combined ozone/hydrogen peroxide treatment in water [J]. Environ Sci Technol, 2000, 34(3): 430-437
    [54] Nélieu S, Stobiecki M, Einhorn J. Tandem solid-phase extraction of atrazine ozonation products in water [J]. J Chromatogr A, 2000, 866(2): 195-201
    [55] Hua W, Bennett E R, Letcher R J. Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River, Ontario, Canada [J]. Water Res, 2006, 40(12): 2259-2266
    [56] Jiang H, Adams C, Graziano N, et al. Occurrence and removal of chloro-s-triazines in water treatment plants [J]. Environ Sci Technol, 2006, 40(11): 3609-3616
    [57] Jiang H, Adams C. Treatability of chloro-s-triazines by conventional drinking water treatment technologies [J]. Water Res, 2006, 40(8): 1657-1667
    [58] Barletta B, Bolzacchini E, Meinardi S, et al. The kinetics and the mechanism of the reaction of 2-chloro-4,6-dialkylamino-1,3,5-triazines with ozone [J]. Ozone Sci Eng, 2003, 25(2): 81-94
    [59] Lai M S, Jensen J N, Weber A S. Oxidation of simazine: ozone, ultraviolet, and combined ozone/ultraviolet oxidation [J]. Water Environ Res, 1995, 67(3): 340-346
    [60] Chen W R, Wu C, Elovitz M S, et al. Reactions of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals [J]. Water Res, 2008, 42(1-2): 137-144
    [61] Pierpoint A C, Hapeman C J, Torrents A. Ozone treatment of soil contaminated with aniline and trifluralin [J]. Chemosphere, 2003, 50(8): 1025-1034
    [62] Hapeman C J, Anderson B G, Torrents A, et al. Mechanistic investigations concerning the aqueous ozonolysis of bromacil [J]. J Agr Food Chem, 1997, 45(3): 1006-1011
    [63] Torrents A, Anderson B G, Hapeman C J. Kinetics of bromacil ozonolysis [J]. J Agr Food Chem, 1998, 46(4): 1630-1636
  • 加载中
计量
  • 文章访问数:  1446
  • HTML全文浏览数:  1376
  • PDF下载数:  435
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-08-29
刘超, 强志民, 张涛, 张忠国. 臭氧和基于臭氧的高级氧化工艺降解农药的研究进展[J]. 环境化学, 2011, 30(7): 1225-1235.
引用本文: 刘超, 强志民, 张涛, 张忠国. 臭氧和基于臭氧的高级氧化工艺降解农药的研究进展[J]. 环境化学, 2011, 30(7): 1225-1235.
LIU Chao, QIANG Zhimin, ZHANG Tao, ZHANG Zhongguo. DEGRADATION OF PESTICIDES BY OZONE AND OZONE-BASED ADVANCED OXIDATION PROCESSES: STATE-OF-THE-ART[J]. Environmental Chemistry, 2011, 30(7): 1225-1235.
Citation: LIU Chao, QIANG Zhimin, ZHANG Tao, ZHANG Zhongguo. DEGRADATION OF PESTICIDES BY OZONE AND OZONE-BASED ADVANCED OXIDATION PROCESSES: STATE-OF-THE-ART[J]. Environmental Chemistry, 2011, 30(7): 1225-1235.

臭氧和基于臭氧的高级氧化工艺降解农药的研究进展

  • 1.  中国科学院生态环境研究中心环境水质学国家重点实验室, 北京, 100085;
  • 2.  轻工业环境保护研究所, 北京, 100089
基金项目:

国家科技支撑项目(2006BAJ08B02)

国家863项目(2008AA06A414)

环境水质学国家重点实验室开放基金项目(10K07ESPCR)资助.

摘要: 由于农药的环境持久性以及毒性,饮用水源中的农药微污染日益受到水处理行业的关注.在众多水处理工艺中,由于其高效氧化去除有机污染物及控制嗅味等特点,臭氧及其相关高级氧化技术的应用已日趋广泛.本文综述了这些氧化技术对多类代表性农药(包括有机氯、有机磷、氨基甲酸酯、氯乙酰胺和三嗪等)的降解效能,详细讨论了农药的降解效率、反应动力学、降解副产物的分析鉴定及可能的反应途径,并评估了降解副产物的毒性,以期为饮用水源遭受农药微污染时的处理工艺选择与优化提供有益参考.

English Abstract

参考文献 (63)

返回顶部

目录

/

返回文章
返回