阳离子凝胶吸附和回收水中的Cr(Ⅵ)

方润, 林江飞, 郑强辉, 叶远松, 薛涵与. 阳离子凝胶吸附和回收水中的Cr(Ⅵ)[J]. 环境化学, 2020, (3): 704-714. doi: 10.7524/j.issn.0254-6108.2019101103
引用本文: 方润, 林江飞, 郑强辉, 叶远松, 薛涵与. 阳离子凝胶吸附和回收水中的Cr(Ⅵ)[J]. 环境化学, 2020, (3): 704-714. doi: 10.7524/j.issn.0254-6108.2019101103
FANG Run, LIN Jiangfei, ZHENG Qianghui, YE Yuansong, XUE Hanyu. Adsorption and recovery of Cr(Ⅵ) from aqueous solution by cationic hydrogel[J]. Environmental Chemistry, 2020, (3): 704-714. doi: 10.7524/j.issn.0254-6108.2019101103
Citation: FANG Run, LIN Jiangfei, ZHENG Qianghui, YE Yuansong, XUE Hanyu. Adsorption and recovery of Cr(Ⅵ) from aqueous solution by cationic hydrogel[J]. Environmental Chemistry, 2020, (3): 704-714. doi: 10.7524/j.issn.0254-6108.2019101103

阳离子凝胶吸附和回收水中的Cr(Ⅵ)

    通讯作者: 方润, E-mail: readfung@163.com
  • 基金项目:

    国家自然科学基金(51703090),福建省自然科学基金(2019J01759),福建省属高校科研专项(JK2017037)和闽江学院校长基金(103952018209)资助.

Adsorption and recovery of Cr(Ⅵ) from aqueous solution by cationic hydrogel

    Corresponding author: FANG Run, readfung@163.com
  • Fund Project: Supported by the National Natural Science Foundation of China (51703090), Natural Science Foundation of Fujian Province (2019J01759), Scientific Research Foundation of Fujian Higher Education(JK2017037)and President Foundation of Minjiang University (103952018209).
  • 摘要: 以三乙烯四胺、二甲胺和甲醛为单体、戊二醛为交联剂,以溶液缩聚-交联法制备了一种高等电点、高阳离子度的阳离子凝胶吸附剂.通过核磁共振碳谱、表面zeta电位和扫描电镜分析探讨了阳离子凝胶吸附水中Cr(Ⅵ)的机理和行为特点,通过静态和动态吸附实验评估了凝胶的吸附能力和再生效果,最后探索了铬的回收.研究表明,阳离子凝胶的等电点为10.2,pH=3时阳离子度达3.9 mmol·g-1,其对水中Cr(Ⅵ)的大容量吸附主要基于凝胶网络上数量众多的质子化胺基与Cr(Ⅵ)间的静电作用.阳离子凝胶对水中Cr(Ⅵ)的吸附能力远高于Cu2+、Ni2+、Zn2+等金属离子且不受SO42-、NO3-、Cl-等阴离子影响.吸附过程中,Cr(Ⅵ)扩散进入凝胶内部与阳离子吸附位点相结合并最终达到动态吸附-脱附平衡.在动态吸附实验中阳离子凝胶同样具有良好的吸附能力,尽管再生后凝胶对Cr(Ⅵ)的吸附容量有所降低,但采用灼烧灰化的方法则可完全回收凝胶所吸附的Cr(Ⅵ).
  • 加载中
  • [1] LI J H, YAO C L, LIU Y B, et al. The hazardous hexavalent chromium formed on trivalent chromium conversion coating:The origin, influence factors and control measures[J]. Journal of Hazardous Materials, 2012, 221-222:56-61.
    [2] 酆婧轩, 李芸邑, 师帅, 等. 硫代硫酸钠、磷酸钠联合处理铬渣中的六价铬[J]. 中国环境科学, 2015, 35(11):3333-3339.

    FENG J X, LI Y Y, SHI S, et al. Remediation of Cr6+ in chromite ore processing residue by sodium thiosulfate and sodium phosphate[J]. China Environmental Science, 2015, 35(11):3333-3339(in Chinese).

    [3] 魏英祥, 涂伟霞. 膨胀石墨负载钯纳米颗粒催化六价铬还原反应[J]. 高等学校化学学报, 2014, 35(11):2397-2402.

    WEI Y X, TU W X. Reduction of hexavalent chromium over the expanded graphite supported palladium nanocatalyst[J]. Chemical journal of Chinese Universities, 2014, 35(11):2397-2402(in Chinese).

    [4] THAKUR V K, THAKUR M K. Recent advances in green hydrogels from lignin:A review[J]. International Journal of Biological Macromolecules, 2015, 72:834-847.
    [5] SHANG J G, ZONG M Z, YU Y, et al. Removal of chromium (Ⅵ) from water using nanoscale zerovalent iron particles supported on herb-residue biochar[J]. Journal of Environmental Management, 2017, 197:331-337.
    [6] CHEN T, ZHOU Z Y, XU S, et al. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J]. Bioresource Technology, 2015, 190:388-394.
    [7] 王婷, 刘文, 李学钊, 等. 钛酸盐纳米片光催化-吸附协同去除水中Cr(Ⅵ)和Cr(Ⅲ)[J]. 环境化学, 2015, 34(10):1777-1784.

    WANG T, LIU W, LI X Z, et al. Simultaneous removal of Cr(Ⅵ) and Cr(Ⅲ) by titanate nanosheets through photocatalysis combined with adsorption[J]. Environmental Chemistry, 2015, 34(10):1777-1784(in Chinese).

    [8] 高卫国, 钱林波, 韩璐, 等. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理[J]. 环境化学, 2018, 37(7):1525-1533.

    GAO W G, QIAN L B, HAN L, et al. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism[J]. Environmental Chemistry, 2018, 37(7):1525-1533(in Chinese).

    [9] 张金洋,黄敏,李琴,等. 纳米CeO2吸附剂的制备及对六价铬的吸附性能[J]. 人工晶体学报, 2018, 47(8):1662-1669.

    ZHANG J Y, HUANG M, LI Q, et al. Preparation of nano-sized CeO2 adsorbents and adsorption ability for hexavalent chromium[J]. Journal of Synthetic Crystals, 2018, 47(8):1662-1669(in Chinese).

    [10] OMONDI B A, OKABE H., HIDAKA Y, et al. Fabrication of poly (1,4-dioxa-7,12-diazacyclotetradecane-8, 11-dione) macrocyclic functionalized hydrogel for high selective adsorption of Cr, Cu and Ni[J]. Reactive and Functional Polymers, 2018, 130:90-97.
    [11] HALOUANE F, OZ Y, MEZIANE D, et al. Magnetic reduced graphene oxide loaded hydrogels:Highly versatile and efficient adsorbents for dyes and selective Cr(Ⅵ) ions removal[J]. Journal of Colloid and Interface Science, 2017, 507:360-369.
    [12] 靳晓鹏, 丁磊, 王丹丹等. MIEX树脂去除水源中突发性六价铬污染的参数优化[J]. 过程工程学报, 2017, 17(4):716-724.

    JIN X P, DING L, WANG D D, et al. Parameters optimizing of removal of hexavalent chromium from the emergently polluted raw water using MIEX resin[J]. The Chinese Journal of Process Engineering, 2017, 17(4):716-724(in Chinese).

    [13] 陈浩凡, 潘仕荣, 胡瑜, 等. 胶体滴定法测定羧甲基壳聚糖的取代度[J]. 分析测试学报, 2003, 22(6):70-73.

    CHEN H F, PAN S R, HU Y, et al. The determination of substitution degree of carboxymethyl chitosan by colloid titration[J]. Journal of Instrumental Analysis, 2003, 22(6):70-73(in Chinese).

    [14] WANG B D, ZHOU Y X, LI L, et al. Preparation of amidoxime-functionalized mesoporous silica nanospheres (ami-MSN) from coal fly ash for the removal of U(Ⅵ)[J]. Science of the Total Environment, 2018, 626:219-227.
    [15] LI M L, ZHANG Z Q, LI R H, et al. Removal of Pb(Ⅱ) and Cd(Ⅱ) ions from aqueous solution by thiosemicarbazide modified chitosan[J]. International Journal of Biological Macromolecules, 2016, 86:876-884.
    [16] WANG J J, LIU F. Synthesis and application of ion-imprinted interpenetrating polymer network gel for selective solid phase extraction of Cd2+[J]. Chemical Engineering Journal, 2014, 117-126.
    [17] DABROWSKI A, HUBICKI Z, PODKO P. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56(2):91-106.
    [18] SAMUEL C N T, KE Y, IRENE M C L. Column study of Cr(Ⅵ) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil[J]. Journal of Contaminant Hydrology, 2011, 125:39-46.
    [19] 胡跃飞, 林国强. 现代有机反应第二卷——碳氮键的生成反应[M]. 北京:化学工业出版社, 2008. HU Y F, LIN G Q. Contemporary organic reaction Vol.2 C-N bond formation[M]. Beijing:Chemical Industry Press, 2008(in Chinese).
    [20] LIU Y, ZHENG Y, WANG A Q. Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites[J]. Journal of Environmental Sciences, 2010, 22:486-493.
    [21] HO Y S, MCKAY G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J]. Water Research, 2000, 34:735-742.
    [22] DU L N, WANG B, LI G, et al. Biosorption of the metalcomplex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1:Kinetics and sorption mechanisms[J]. Journal of Hazardous Materials, 2012, 205-206:47-54.
    [23] DANESHVAR E, KOUSHA M, JOKAR M, et al. Acidic dye biosorption onto marine brown macroalgae:Isotherms, kinetic and thermodynamic studies[J]. Chemical Engineering Journal, 2012, 204-206:225-234.
    [24] 陈豪宇, 张胜利, 凯橙橙, 等. 聚乙烯亚胺改性纤维素纤维对Cr(Ⅵ)的吸附研究[J]. 环境科学学报, 2018, 38(8):3090-3098.

    CHEN H Y, ZHANG S L, KAI C C, et al. Polyethyleneimine modified cellulose fiber for Cr(Ⅵ) removal from aqueous solution[J]. Acta Scientiae Circumstantiae, 38(8):3090-3098(in Chinese).

    [25] 王姝凡, 徐卫华, 刘云国, 等. 壳聚糖/改性平菇复合吸附剂对Cr(Ⅵ)的吸附特性[J]. 中国环境科学, 2019, 39(8):3264-3270.

    WANG S F, XU W H, LIU Y G, et al. Characteristics of Cr(Ⅵ) removal by cross-linked chitosan/tartaric acid modified Pleurotus ostreatus composite adsorbent[J]. China Environmental Science, 2019, 39(8):3264-3270(in Chinese).

    [26] LI K B, ZHANG Y H, DANG Y, et al. Removal of Cr(Ⅵ) from aqueous solutions using buckwheat (Fagopyrum esculentum moench) hull through adsorption-reduction:Affecting factors, isotherm, and mechanisms[J]. Soil Air Water, 2014, 42:1549-1557.
    [27] RAJPUT S, PITTMAN C U, MOHAN D. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water[J].Journal of Colloid and Interface Science, 2016, 468:334-346.
    [28] PAL P, PANDEY J P, SEN G. Modified PVP based hydrogel:Synthesis, characterization and application in selective abstraction of metal ions from water[J]. Materials Chemistry and Physics, 2017, 194:261-273.
  • 加载中
计量
  • 文章访问数:  2059
  • HTML全文浏览数:  2059
  • PDF下载数:  29
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-11

阳离子凝胶吸附和回收水中的Cr(Ⅵ)

    通讯作者: 方润, E-mail: readfung@163.com
  • 1. 闽江学院化工与材料系, 绿色材料与化工福建省高校工程研究中心, 福州, 350108;
  • 2. 福建省中国漆新型材料工程研究中心, 福州, 350108
基金项目:

国家自然科学基金(51703090),福建省自然科学基金(2019J01759),福建省属高校科研专项(JK2017037)和闽江学院校长基金(103952018209)资助.

摘要: 以三乙烯四胺、二甲胺和甲醛为单体、戊二醛为交联剂,以溶液缩聚-交联法制备了一种高等电点、高阳离子度的阳离子凝胶吸附剂.通过核磁共振碳谱、表面zeta电位和扫描电镜分析探讨了阳离子凝胶吸附水中Cr(Ⅵ)的机理和行为特点,通过静态和动态吸附实验评估了凝胶的吸附能力和再生效果,最后探索了铬的回收.研究表明,阳离子凝胶的等电点为10.2,pH=3时阳离子度达3.9 mmol·g-1,其对水中Cr(Ⅵ)的大容量吸附主要基于凝胶网络上数量众多的质子化胺基与Cr(Ⅵ)间的静电作用.阳离子凝胶对水中Cr(Ⅵ)的吸附能力远高于Cu2+、Ni2+、Zn2+等金属离子且不受SO42-、NO3-、Cl-等阴离子影响.吸附过程中,Cr(Ⅵ)扩散进入凝胶内部与阳离子吸附位点相结合并最终达到动态吸附-脱附平衡.在动态吸附实验中阳离子凝胶同样具有良好的吸附能力,尽管再生后凝胶对Cr(Ⅵ)的吸附容量有所降低,但采用灼烧灰化的方法则可完全回收凝胶所吸附的Cr(Ⅵ).

English Abstract

参考文献 (28)

目录

/

返回文章
返回