相变微胶囊在节能环保中的应用研究进展

李芙蓉, 孙志成, 张青青, 问金月, 黄淑益, 杜晓阳, 马璇. 相变微胶囊在节能环保中的应用研究进展[J]. 环境化学, 2020, (3): 762-773. doi: 10.7524/j.issn.0254-6108.2019103111
引用本文: 李芙蓉, 孙志成, 张青青, 问金月, 黄淑益, 杜晓阳, 马璇. 相变微胶囊在节能环保中的应用研究进展[J]. 环境化学, 2020, (3): 762-773. doi: 10.7524/j.issn.0254-6108.2019103111
LI Furong, SUN Zhicheng, ZHANG Qingqing, WEN Jinyue, HUANG Shuyi, DU Xiaoyang, MA Xuan. Application of phase-change microcapsules in energy saving and environmental protection[J]. Environmental Chemistry, 2020, (3): 762-773. doi: 10.7524/j.issn.0254-6108.2019103111
Citation: LI Furong, SUN Zhicheng, ZHANG Qingqing, WEN Jinyue, HUANG Shuyi, DU Xiaoyang, MA Xuan. Application of phase-change microcapsules in energy saving and environmental protection[J]. Environmental Chemistry, 2020, (3): 762-773. doi: 10.7524/j.issn.0254-6108.2019103111

相变微胶囊在节能环保中的应用研究进展

    通讯作者: 孙志成, E-mail: sunzhicheng@bigc.edu.cn
  • 基金项目:

    国家自然科学基金(21776021,21646013)和北京市教委重点项目(KZ201910015016)资助.

Application of phase-change microcapsules in energy saving and environmental protection

    Corresponding author: SUN Zhicheng, sunzhicheng@bigc.edu.cn
  • Fund Project: Supported by National Natural Science Foundation of China (21776021, 21646013) and Key Scientific Research Project of Beijing Municipal Commission of Education (KZ201910015016).
  • 摘要: 改性相变微胶囊作为新型环境功能材料,以其优良的保温性能、节能减排和吸附作用成为材料科学、环境科学等前沿学科的研究热点.本文首先介绍了相变微胶囊的结构、相变机理和形貌类型,并围绕喷射干燥法、静电结合法、原位聚合法、界面聚合法、凝聚-相分离法等5种制备方法对微胶囊制备技术进行了详细的阐述.根据芯材物理状态的差异列举了不同类型的微胶囊,并归纳总结目前微胶囊应用存在的问题.重点综述了碳材料、金属材料及导电聚合物对相变微胶囊改性的研究.结果表明,改性相变微胶囊不仅提高了微胶囊自身的性能而且对环境质量可以起到良好的改善作用,具体体现在大气、水质、噪声、辐射等众多领域的应用.
  • 加载中
  • [1] YANG R, XU H, ZHANG Y, et al. Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion[J]. Solar Energy Materials and Solar Cells, 2003, 80(4):405-416.
    [2] ALKAN C, SANı A, KARAIPEKLI A, et al. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2009, 93(1):143-147.
    [3] ZHAO C Y, ZHANG G H. Review on microencapsulated phase change materials (MEPCMs):Fabrication, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8):3813-3832.
    [4] REZVANPOUR M, HASANZADEH M, AZIZI D, et al. Synthesis and characterization of micro-nanoencapsulated n-eicosane with PMMA shell as novel phase change materials for thermal energy storage[J]. Materials Chemistry and Physics, 2018, 215:299-304.
    [5] JEONG S, KIM B W, LAU H C, et al. Gelatin-alginate complexes for egf encapsulation:Effects of H-bonding and electrostatic interactions[J]. Pharmaceutics, 2019, 11(10):530-547.
    [6] GENG X, LI W, WANG Y, et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing[J]. Applied Energy, 2018, 217:281-294.
    [7] JIAO S Z, SUN Z C, LI F R, et al. Preparation of phase change microcapsule and their application in ink[J]. Materials Review,2018, 32(Z1):213-217.
    [8] CHEN S Y, SUN Z C, LI L H, et al. Preparation and characterization of conducting polymer-coated thermally expandable microspheres[J]. Chinese Chemical Letters, 2017, 28(3):658-662.
    [9] JIAO S, SUN Z, ZHOU Y, et al. Surface-coated thermally expandable microspheres with a composite of polydisperse graphene oxide sheets[J]. Chemistry-An Asian Journal, 2019, 14(23):4328-4336.
    [10] JIAO S Z, SUN Z C, LI F R, et al. Preparation and application of conductive polyaniline-coated thermally expandable microspheres[J]. Polymers, 2019, 11(1):22-28.
    [11] LI M, CHEN M, WU Z, et al. Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube[J]. Applied Energy, 2014, 127:166-171.
    [12] HUANG X, ALVA G, LIU L, et al. Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials[J]. Applied Energy, 2017, 200:19-27.
    [13] YAVARI F, FARD H R, PASHAYI K, et al. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives[J]. The Journal of Physical Chemistry C, 2011, 115(17):8753-8758.
    [14] HUANG Y T, ZHANG H, WAN X J, et al. Carbon nanotube-enhanced double-walled phase-change microcapsules for thermal energy storage[J]. Journal of Materials Chemistry A, 2017, 5(16):7482-7493.
    [15] CHEN Z, WANG J, YU F, et al. Preparation and properties of graphene oxide-modified poly (melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage[J]. Journal of Materials Chemistry A, 2015, 3(21):11624-11630.
    [16] TYAGI V V, KAUSHIK S C, TYAGI S K, et al. Development of phase change materials based microencapsulated technology for buildings:A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(2):1373-1391.
    [17] CUNHA S, AGUIAR J B, FERREIRA V M, et al. Influence of the type of phase change materials microcapsules on the properties of lime-Gypsum thermal mortars[J]. Advanced Engineering Materials, 2014, 16(4):433-441.
    [18] LEE S H, YOON S J, KIM Y G, et al. Development of building materials by using micro-encapsulated phase change material[J]. Korean Journal of Chemical Engineering, 2007, 24(2):332-335.
    [19] SHIN Y, YOO D I, SON K, et al. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). Ⅱ. Preparation and application of PCM microcapsules[J]. Journal of Applied Polymer Science, 2005, 96(6):2005-2010.
    [20] SANCHEZ P, SANCHEZ-FERNANDEZ M V, ROMERO A, et al. Development of thermo-regulating textiles using paraffin wax microcapsules[J]. Thermochimica Acta, 2010, 498(1-2):16-21.
    [21] OEPEK B, BOH B, ŠUMIGA B, et al. Printing of antimicrobial microcapsules on textiles[J]. Coloration Technology, 2012, 128(2):95-102.
    [22] YANG Y, YE X, LUO J, et al. Polymethyl methacrylate based phase change microencapsulation for solar energy storage with silicon nitride[J]. Solar Energy, 2015, 115:289-296.
    [23] YANG Y, KUANG J, WANG H, et al. Enhancement in thermal property of phase change microcapsules with modified silicon nitride for solar energy[J]. Solar Energy Materials and Solar Cells, 2016, 151:89-95.
    [24] GAO F, WANG X, WU D, et al. Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide[J]. Solar Energy Materials and Solar Cells, 2017, 168:146-164.
    [25] LIU H, WANG X, WU D, et al. Fabrication of graphene/TiO2/paraffin composite phase change materials for enhancement of solar energy efficiency in photocatalysis and latent heat storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6):4906-4915.
    [26] TEIXEIRA M I, ANDRADE L R, FARINA M, et al. Characterization of short chain fatty acid microcapsules produced by spray drying[J]. Materials Science and Engineering:C, 2004, 24(5):653-658.
    [27] BJERKNES K, BRAENDEN J U, BRAENDEN J E, et al. Air-filled polymeric microcapsules from emulsions containing different organic phases[J]. Journal of Microencapsulation, 2001, 18(2):159-171.
    [28] SCHER H B, RODSON M, LEE K S. Microencapsulation of pesticides by interfacial polymerization utilizing isocyanate or aminoplast chemistry[J]. Pesticide Science, 1998, 54(4):394-400.
    [29] CHO J S, KWON A, CHO C G, et al. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system[J]. Colloid and Polymer Science, 2002, 280(3):260-266.
    [30] BOH B, KNEZ E, STARESINIC M, et al. Microencapsulation of higher hydrocarbon phase change materials by in situ polymerization[J]. Journal of Microencapsulation, 2005, 22(7):715-735.
    [31] SALAUN F, DEVAUX E, BOURBIGOT S, et al. Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization[J]. Chemical Engineering Journal, 2009, 155(1-2):457-465.
    [32] LI W, ZHANG X X, WANG X C, et al. Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content[J]. Materials Chemistry and Physics, 2007, 106(2-3):437-442.
    [33] PALANIKKUMARAN M, GUPTA K K, AGRAWAL A K, et al. Highly stable hexamethylolmelamine microcapsules containing n-octadecane prepared by in situ encapsulation[J]. Journal of Applied Polymer Science, 2009, 114(5):2997-3002.
    [34] MA Y, CHU X, LI W, et al. Preparation and characterization of poly (methyl methacrylate-co-divinylbenzene) microcapsules containing phase change temperature adjustable binary core materials[J]. Solar Energy, 2012, 86(7):2056-2066.
    [35] SANCHEZ L, SANCHEZ P, CARMONA M, et al. Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization[J]. Colloid and Polymer Science, 2008, 286(8-9):1019-1027.
    [36] BORREGUERO A M, CARMONA M, SANCHEZ M L, et al. Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio[J]. Applied Thermal Engineering, 2010, 30(10):1164-1169.
    [37] DEVECI S S, BASAL G. Preparation of PCM microcapsules by complex coacervation of silk fibroin and chitosan[J]. Colloid and Polymer Science, 2009, 287(12):1455-1467.
    [38] ZHOU S, ZHOU Z, XU W, et al. Water as blowing agent:Preparation of environmental thermally expandable microspheres via inverse suspension polymerization[J]. Polymer-Plastics Technology and Engineering, 2018, 57(10):1026-1034.
    [39] GE H, LI H, MEI S, et al. Low melting point liquid metal as a new class of phase change material:An emerging frontier in energy area[J]. Renewable and Sustainable Energy Reviews, 2013, 21:331-346.
    [40] SARI A, ALKAN C, KARAIPEKLI A, et al. Microencapsulated n-octacosane as phase change material for thermal energy storage[J]. Solar Energy, 2009, 83(10):1757-1763.
    [41] SARI A, ALKAN C, KARAIPEKLI A, et al. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage[J]. Applied Energy, 2010, 87(5):1529-1534.
    [42] ZHANG X X, TAO X M, YICK K L, et al. Expansion space and thermal stability of microencapsulated n-octadecane[J]. Journal of Applied Polymer Science, 2005, 97(1):390-396.
    [43] QIU X, SONG G, CHU X, et al. Microencapsulated n-alkane with p (n-butyl methacrylate-co-methacrylic acid) shell as phase change materials for thermal energy storage[J]. Solar Energy, 2013, 91:212-220.
    [44] CHOI J K, LEE J G, KIM J H, et al. Preparation of microcapsules containing phase change materials as heat transfer media by in-situ polymerization[J]. Journal of Industrial and Engineering Chemistry, 2001, 7(6):358-362.
    [45] ZHANG H, WANG X. Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 332(2-3):129-138.
    [46] SU J, WANG L, REN L, et al. Fabrication and thermal properties of microPCMs:Used melamine-formaldehyde resin as shell material[J]. Journal of Applied Polymer Science, 2006, 101(3):1522-1528.
    [47] SU J F, WANG X Y, DONG H, et al. Influence of temperature on the deformation behaviors of melamine-formaldehyde microcapsules containing phase change material[J]. Materials Letters, 2012, 84:158-161.
    [48] HUANG Z, YU X, LI W, et al. Preparation of urea-formaldehyde paraffin microcapsules modified by carboxymethyl cellulose as a potential phase change material[J]. Journal of Forestry Research, 2015, 26(1):253-260.
    [49] JIANG Y, WANG D, ZHAO T, et al. Preparation, characterization, and prominent thermal stability of phase-change microcapsules with phenolic resin shell and n-hexadecane core[J]. Journal of Applied Polymer Science, 2007, 104(5):2799-2806.
    [50] NIXON J R, KHALIL S A H, CARLESS J E, et al. Gelatin coacervate microcapsules containing sulphamerazine:Their preparation and the in vitro release of the drug[J]. Journal of Pharmacy and Pharmacology, 1968, 20(7):528-538.
    [51] AL-SHANNAQ R, KURDI J, AL-MUHTASEB S, et al. Innovative method of metal coating of microcapsules containing phase change materials[J]. Solar Energy, 2016, 129:54-64.
    [52] YU S, WANG X, WU D, et al. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability:synthesis, microstructure, and performance evaluation[J]. Applied Energy, 2014, 114:632-643.
    [53] NABIL M, KHODADADI J M. Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials[J]. International Journal of Heat and Mass Transfer, 2013, 67:301-310.
    [54] OYA T, NOMURA T, TSUBOTA M, et al. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles[J]. Applied Thermal Engineering, 2013, 61(2):825-828.
    [55] SONG Q, LI Y, XING J, et al. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles[J]. Polymer, 2007, 48(11):3317-3323.
    [56] ZHUANG X, ZHANG Y, CAI C, et al. Design the magnetic microencapsulated phase change materials with poly (MMA-MAA)@n-octadecane modified by Fe3O4[J]. Scientific Reports, 2018, 8(1):16379-16389.
  • 加载中
计量
  • 文章访问数:  2913
  • HTML全文浏览数:  2913
  • PDF下载数:  67
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-31

相变微胶囊在节能环保中的应用研究进展

    通讯作者: 孙志成, E-mail: sunzhicheng@bigc.edu.cn
  • 北京印刷学院, 北京市印刷电子工程技术研究中心, 印刷与包装工程学院, 北京, 102600
基金项目:

国家自然科学基金(21776021,21646013)和北京市教委重点项目(KZ201910015016)资助.

摘要: 改性相变微胶囊作为新型环境功能材料,以其优良的保温性能、节能减排和吸附作用成为材料科学、环境科学等前沿学科的研究热点.本文首先介绍了相变微胶囊的结构、相变机理和形貌类型,并围绕喷射干燥法、静电结合法、原位聚合法、界面聚合法、凝聚-相分离法等5种制备方法对微胶囊制备技术进行了详细的阐述.根据芯材物理状态的差异列举了不同类型的微胶囊,并归纳总结目前微胶囊应用存在的问题.重点综述了碳材料、金属材料及导电聚合物对相变微胶囊改性的研究.结果表明,改性相变微胶囊不仅提高了微胶囊自身的性能而且对环境质量可以起到良好的改善作用,具体体现在大气、水质、噪声、辐射等众多领域的应用.

English Abstract

参考文献 (56)

目录

/

返回文章
返回