铁盐类复合稳定剂对砷钙渣中As的稳定化作用及机理

杨厅, 王强, 李二平, 余志元, 成乐为, 邱亚群. 铁盐类复合稳定剂对砷钙渣中As的稳定化作用及机理[J]. 环境化学, 2020, (11): 2999-3008. doi: 10.7524/j.issn.0254-6108.2020042202
引用本文: 杨厅, 王强, 李二平, 余志元, 成乐为, 邱亚群. 铁盐类复合稳定剂对砷钙渣中As的稳定化作用及机理[J]. 环境化学, 2020, (11): 2999-3008. doi: 10.7524/j.issn.0254-6108.2020042202
YANG Ting, WANG Qiang, LI Erping, YU Zhiyuan, CHENG Lewei, QIU Yaqun. Stabilization treatment of arsenic calcium residue using Fe-containing compound stabilizers[J]. Environmental Chemistry, 2020, (11): 2999-3008. doi: 10.7524/j.issn.0254-6108.2020042202
Citation: YANG Ting, WANG Qiang, LI Erping, YU Zhiyuan, CHENG Lewei, QIU Yaqun. Stabilization treatment of arsenic calcium residue using Fe-containing compound stabilizers[J]. Environmental Chemistry, 2020, (11): 2999-3008. doi: 10.7524/j.issn.0254-6108.2020042202

铁盐类复合稳定剂对砷钙渣中As的稳定化作用及机理

    通讯作者: 余志元, E-mail: csuyzy@126.com
  • 基金项目:

    湖南省环保科研课题(湘环函[2018]364号)资助.

Stabilization treatment of arsenic calcium residue using Fe-containing compound stabilizers

    Corresponding author: YU Zhiyuan, csuyzy@126.com
  • Fund Project: Supported by Hunan Environmental Protection Research Project (Xianghuanhan[2018]364).
  • 摘要: 本实验以砷含量为5.09%的砷钙渣为对象,结合浸出毒性测试、XRD、SEM和砷形态分析,研究铁盐类复合稳定剂对砷钙渣中砷的稳定化处理效果及机理.结果表明,在铁盐类复合稳定剂用量30%、浓硫酸用量6.0 mL/100 g渣和水渣比4.5:10条件下,养护180 d内,处理后砷钙渣能够达到《危险废物填埋污染控制标准》(GB 18598-2019)的要求,且增重比和增容比分别为1.31和1.12.通过化学稳定化+胶凝固化实现As的稳定化,在稳定化处理过程中,有效态As向无定形铁铝氧化物结合态As的转变是As稳定化的主要机理;而稳定的砷酸钙化合物-毒石的生成和石膏结构中砷酸盐的掺入是As稳定化的辅助机理.同时,改性后的反应性矿物材料可生成水化硅酸钙凝胶,通过物理包封作用进一步抑制As的释放.
  • 加载中
  • [1] ZHANG D N, YUAN Z D, WANG S F, et al. Incorporation of arsenic into gypsum:Relevant to arsenic removal and immobilization process in hydrometallurgical industry[J]. Journal of Hazardous Materials, 2015, 300:272-280.
    [2] NAZARI A M, RADZINSKI R, GHAHREMAN A. Review of arsenic metallurgy:Treatment of arsenical minerals and the immobilization of arsenic[J]. Hydrometallurgy, 2016, 174:258-281.
    [3] FUJITA T, TAGUCHI R, ABUMIYA M, et al. Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions:Physical properties and stability of the scorodite[J]. Hydrometallurgy, 2009, 96(3):189-198.
    [4] PENG B, LEI J, MIN X B, et al. Physicochemical properties of arsenic-bearing lime-ferrate sludge and its leaching behaviors[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(5):1188-1198.
    [5] LEI J, PENG B, LIANG Y J, et al. Effects of anions on calcium arsenate crystalline structure and arsenic stability[J]. Hydrometallurgy, 2018, 177:123-131.
    [6] RIVEROS P A, DUTRIZAC J E, SPENCER P. Arsenic disposal practices in the metallurgical industry[J]. Canadian Metallurgical Quarterly, 2001, 40(4):395-420.
    [7] ZHANG D N, WANG S F, WANG Y, et al. The long-term stability of calcium arsenates:Implications for phase transformation and arsenic mobilization[J].Journal of Environmental Sciences,2019,84(10):29-41.
    [8] MARTÏNEZ-VILLEGAS N, BRIONES-GALLARDO R, RAMOS-LEAL J A, et al. Arsenic mobility controlled by solid calcium arsenates:A case study in Mexico showcasing a potentially widespread environmental problem[J]. Environmental Pollution, 2013, 176(5):114-122.
    [9] YOON I H, MOON D H, KIM K W, et al. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust[J]. Journal of Environmental Management, 2010, 91(11):2322-2328.
    [10] 张淑媛, 童宏祥, 徐诗琦, 等. 次氯酸钙/氧化钙对高砷污泥的氧化稳定化处理[J]. 环境工程学报, 2018,12(2):625-629.

    ZHANG S Y, TONG H X, XU S Q, et al. Oxidization/stabilization of high concentration arsenic containing sludge using calcium hypochlorite and calcium oxide[J]. Chinese Journal of Environmental Engineering, 2018, 12(2):625-629(in Chinese).

    [11] WANG X, ZHANG H, WANG L L, et al. Transformation of arsenic during realgar tailings stabilization using ferrous sulfate in a pilot-scale treatment[J]. The Science of the Total Environment, 2019, 668:32-39.
    [12] CLANCY T M, SNYDER K V, REDDY R, et al. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment[J]. Journal of Hazardous Materials, 2015, 300:522-529.
    [13] 罗中秋, 周新涛, 贾庆明, 等. 磷渣基地聚物材料固化砷钙渣的机理[J]. 硅酸盐学报, 2015, 43(5):699-704.

    LUO Z Q, ZHOU X T, JIA Q M, et al. Solidification/immobilization of calcium arsenate waste using phosphorous slag based geopolymers[J]. Journal of the Chinese Ceramic Society, 2015, 43(5):699-704(in Chinese).

    [14] LI J S, WANG L, CUI J L, et al. Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils:Spectroscopic investigation and leaching tests[J]. Science of the Total Environment, 2018, 631/632:1486-1494.
    [15] LI Y, TANG J X, ZHANG T, et al. Study on chemical stabilization in arsenic contaminated soil:A review[J]. Applied Mechanics & Materials, 2013, 295-298:1089-1092.
    [16] SEIDEL H, GOERSCH K, AMSTAETTER K, et al. Immobilization of arsenic in a tailings material by ferrous iron treatment[J]. Water Research, 2005, 39(17):4073-4082.
    [17] LEI J, PENG B, MIN X, et al. Modeling and optimization of lime-based stabilization in high alkaline arsenic-bearing sludges with a central composite design[J]. Journal of Environmental Science and Health, 2017, 52(5):449-458.
    [18] FEI J C, MA J J, YANG J Q, et al. Effect of simulated acid rain on stability of arsenic calcium residue in residue field[J]. Environmental Geochemistry and Health, 2019, 42(3):769-780.
    [19] MIRETZKY P, CIRELLI A F. Remediation of Arsenic-Contaminated Soils by Iron Amendments:A Review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(2):93-115.
    [20] WANG X, DING J Q, WANG L L, et al. Stabilization treatment of arsenic-alkali residue (AAR):Effect of the coexisting soluble carbonate on arsenic stabilization[J]. Environment International,2020,135:105406.
    [21] HU L F, FENG H J, WU Y Y, et al. A comparative study on stabilization of available As in highly contaminated hazardous solid waste[J]. Journal of Hazardous Materials, 2010, 174(1-3):194-201.
    [22] GB 18598-2019,危险废物填埋污染控制标准[S]. GB 18598-2019, Standard for pollution control on the hazardous waste landfill[S] (in Chinese).
    [23] HJ 1090-2020,砷渣稳定化处置工程技术规范[S]. HJ 1090-2020, Technical specifications for arsenic-containing solid waste stabilization[S] (in Chinese).
    [24] 罗道成. 用氯化亚铁稳定化处理含砷废渣的试验研究[J]. 矿业工程研究, 2015, 30(4):68-74.

    LUO D C. Experimental study on stabilization treatment of waste residue containing arsenic with ferrous chloride[J]. Mineral Engineering Research, 2015, 30(4):68-74(in Chinese).

    [25] WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2):309-323.
    [26] GRAVES D, SMITH J J, CHEN L X, et al. Biogeochemical oxidation of calcium sulfite hemihydrate to gypsum in flue gas desulfurization byproduct using sulfur-oxidizing bacteria[J]. Journal of Environmental Management, 2017, 201:357-365.
  • 加载中
计量
  • 文章访问数:  2020
  • HTML全文浏览数:  2020
  • PDF下载数:  54
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-04-22

铁盐类复合稳定剂对砷钙渣中As的稳定化作用及机理

    通讯作者: 余志元, E-mail: csuyzy@126.com
  • 1. 中南大学化学化工学院, 长沙, 410083;
  • 2. 湖南省环境保护科学研究院, 水污染控制技术湖南省重点实验室, 长沙, 410042
基金项目:

湖南省环保科研课题(湘环函[2018]364号)资助.

摘要: 本实验以砷含量为5.09%的砷钙渣为对象,结合浸出毒性测试、XRD、SEM和砷形态分析,研究铁盐类复合稳定剂对砷钙渣中砷的稳定化处理效果及机理.结果表明,在铁盐类复合稳定剂用量30%、浓硫酸用量6.0 mL/100 g渣和水渣比4.5:10条件下,养护180 d内,处理后砷钙渣能够达到《危险废物填埋污染控制标准》(GB 18598-2019)的要求,且增重比和增容比分别为1.31和1.12.通过化学稳定化+胶凝固化实现As的稳定化,在稳定化处理过程中,有效态As向无定形铁铝氧化物结合态As的转变是As稳定化的主要机理;而稳定的砷酸钙化合物-毒石的生成和石膏结构中砷酸盐的掺入是As稳定化的辅助机理.同时,改性后的反应性矿物材料可生成水化硅酸钙凝胶,通过物理包封作用进一步抑制As的释放.

English Abstract

参考文献 (26)

目录

/

返回文章
返回