上海市公园绿地常见落叶树木叶片汞浓度时空特征及环境意义

王奇, 王永杰, 周立旻, 郑祥民. 上海市公园绿地常见落叶树木叶片汞浓度时空特征及环境意义[J]. 环境化学, 2021, (1): 232-239. doi: 10.7524/j.issn.0254-6108.2019091905
引用本文: 王奇, 王永杰, 周立旻, 郑祥民. 上海市公园绿地常见落叶树木叶片汞浓度时空特征及环境意义[J]. 环境化学, 2021, (1): 232-239. doi: 10.7524/j.issn.0254-6108.2019091905
WANG Qi, WANG Yongjie, ZHOU Limin, ZHENG Xiangmin. Temporal and spatial characteristics of mercury concentrations in leaves of common deciduous tree species in parks of Shanghai and its environmental implications[J]. Environmental Chemistry, 2021, (1): 232-239. doi: 10.7524/j.issn.0254-6108.2019091905
Citation: WANG Qi, WANG Yongjie, ZHOU Limin, ZHENG Xiangmin. Temporal and spatial characteristics of mercury concentrations in leaves of common deciduous tree species in parks of Shanghai and its environmental implications[J]. Environmental Chemistry, 2021, (1): 232-239. doi: 10.7524/j.issn.0254-6108.2019091905

上海市公园绿地常见落叶树木叶片汞浓度时空特征及环境意义

    通讯作者: 郑祥民, E-mail: xmzheng@re.ecnu.edu.cn
  • 基金项目:

    国家自然科学基金(41771508,41871015)资助.

Temporal and spatial characteristics of mercury concentrations in leaves of common deciduous tree species in parks of Shanghai and its environmental implications

    Corresponding author: ZHENG Xiangmin, xmzheng@re.ecnu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(41771508, 41871015).
  • 摘要: 植物叶片汞浓度与大气气态单质汞(GEM/Hg0)浓度的线性关系表明叶片汞浓度大小可用于指示植物生长区内GEM浓度的高低水平.通过分析上海市绿地公园(25座)中常见落叶树木樱花、水杉、法桐叶片汞浓度的时空变化特征,探究区域内GEM含量水平及分布特征.2017年5—10月对7座公园中这3种树木叶汞浓度进行连续监测,结果显示叶汞浓度与叶片生长时间呈显著线性正相关关系(P<0.01),表明叶片在生长期内不断吸收累积大气汞.而且在生长期内,3种树木叶汞浓度日累积速率(g·kg-1·d-1)具有相似的变化趋势,意味着不同树木叶汞的累积对外界环境的响应可能是一致的,除树种差异外.同年11月初,25座公园(包含上述7座)中樱花、水杉、法桐衰老叶片叶汞浓度为(54.2±12,31.8—76.7)μg·kg-1、(42.0±9,23.5—67.9)μg·kg-1、(36.1±11,21.4—60.3)μg·kg-1(平均值,范围),有显著的种间差异(P<0.01),而在中心城区和郊区间无显著差异(P>0.05).空间插值分析结果初步表明衰老叶片叶汞浓度的空间梯度差异不大,且高值区域没有完全重合.这表明了利用衰老叶片叶汞浓度反映区域GEM浓度整体水平空间分布规律存在一定的不确定性,仍需进一步深入研究.
  • 加载中
  • [1] FITZGERALD W F, ENGSTROM D R, MASON R P, et al.The case for atmospheric mercury contamination in remote areas[J].Environmenta Science & Technology, 1998, 32(1): 1-7.
    [2] 李永华, 王五一, 杨林生, 等.汞的环境生物地球化学研究进展[J].地理科学进展, 2004, 23(6): 33-40.

    LI Y H, WANG W Y, YANG L S, et al.A review of mercury in environmental biogeochemistry[J].Progress in Geography, 2004, 23(6): 33-40(in Chinese).

    [3] LINDBERG S, BULLOCK R, EBINGHAUS R, et al.A synthesis of progress and uncertainties in attributing the sources of mercury in deposition[J].Ambio, 2007, 36(1): 19-32.
    [4] LAACOURI A, NATER E A, KOLKA R K.Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, U.S.A[J].Environmental Science & Technology, 2013, 47(18): 10462-10470.
    [5] 冯新斌, 付学吾, SOMMAR J, 等.地表自然过程排汞研究进展及展望[J].生态学杂志, 2011, 30(5): 845-856.

    FENG X B, FU X W, SOMMAR J, et al.Earth surface natural mercury emission research progress and perspective[J].Chinese Journal of Ecology, 2011, 30(5): 845-856(in Chinese).

    [6] BUEHLER S S, HITES R A.Peer reviewed: The Great Lakes' integrated atmospheric deposition network[J].Environmental Science & Technology, 2002, 36(17): 354A-359A.
    [7] HOLMES C D, JACOB D J, CORBITT E S, et al.Global atmospheric model for mercury including oxidation by bromine atoms[J].Atmospheric Chemistry & Physics, 2010, 10(24): 12037-12057.
    [8] GUSTIN M S, AMOS H M, HUANG J, et al.Measuring and modeling mercury in the atmosphere: A critical review[J].Atmospheric Chemistry and Physics, 2015, 15(10): 5697-5713.
    [9] 冯新斌, 陈玖斌, 付学吾, 等.汞的环境地球化学研究进展[J].矿物岩石地球化学通报, 2013, 32(5): 503-530.

    FENG X B, CHEN J B, FU X W, et al.Progresses on environmental geochemistry of mercury[J].Bulletin of Mineralogy and Geochemistry, 2013, 32(5): 503-530(in Chinese).

    [10] WANG X, YE Z H, LI B, et al.Growing rice aerobically decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg[J].Environmental Science & Technology, 2014, 48(3): 1878-1885.
    [11] QIU G L, FENG X B, LI P, et al.Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China[J].Journal of Agricultural and Food Chemistry, 2008, 56(7): 2465-2468.
    [12] REA A W, LINDBERG S E, SCHERBATSKOY T, et al.Mercury accumulation in foliage over time in two northern mixed-hardwood forests[J].Water Air & Soil Pollution, 2002, 133(1/4): 49-67.
    [13] ERICKSEN J A, GUSTIN M S.Foliar exchange of mercury as a function of soil and air mercury concentrations[J].Science of the Total Environment, 2004, 324(1/3): 271-279.
    [14] FAY L, GUSTIN M.Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment[J].Water Air and Soil Pollution, 2007, 181(1/4): 373-384.
    [15] NIU Z C, ZHANG X S, WANG Z W, et al.Field controlled experiments of mercury accumulation in crops from air and soil[J].Environmental Pollution, 2011, 159(10): 2684-2689.
    [16] NIU Z C, ZHANG X S, WANG S, et al.The linear accumulation of atmospheric mercury by vegetable and grass leaves: Potential biomonitors for atmospheric mercury pollution[J].Environmental Science and Pollution Research, 2013, 20(9): 6337-6343.
    [17] ERICKSEN J A, GUSTIN M S, SCHORRAN D E, et al.Accumulation of atmospheric mercury in forest foliage[J].Atmospheric Environment, 2003, 37(12): 1613-1622.
    [18] BUSHEY J T, NALLANA A G, MONTESDOCA M R, et al.Mercury dynamics of a northern hardwood canopy[J].Atmospheric Environment, 2008, 42(29): 6905-6914.
    [19] POISSANT L, PILOTE M, YUMVIHOZE E, et al.Mercury concentrations and foliage/atmosphere fluxes in a maple forest ecosystem in Québec, Canada[J].Journal of Geophysical Research-Atmospheres, 2008, 113: D10307.
    [20] DAVIS D D, MCCLENAHEN J R, HUTNIK J R.Selection of a biomonitor to evaluate mercury levels in forests of Pennsylvania[J].Northeastern Naturalist, 2002, 9(2): 183-192.
    [21] ESBRI J M, CACOVEAN H, HIGUERAS P.Usage proposal of a common urban decorative tree (Salix alba L.) to monitor the dispersion of gaseous mercury: A case study from Turda (Romania)[J].Chemosphere, 2018, 193: 74-81.
    [22] SIWIK E I H, CAMPBELL L M, MIERLE G.Fine-scale mercury trends in temperate deciduous tree leaves from Ontario, Canada[J].Science of the Total Environment, 2009, 407(24): 6275-6279.
    [23] NIU Z, ZHANG X, WANG Z, et al.Mercury in leaf litter in typical suburban and urban broadleaf forests in China[J].Journal of Environmental Sciences, 2011, 23(12): 2042-2048.
    [24] ZHANG L, WANG S, WANG L, et al.Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China[J].Environmental Science & Technology, 2015, 49(5): 3185-3194.
    [25] FU X W, ZHANG H, YU B, et al.Observations of atmospheric mercury in China: A critical review[J].Atmospheric Chemistry and Physics, 2015, 15(16): 9455-9476.
    [26] FU X W, YANG X, LANG X F, et al.Atmospheric wet and litterfall mercury deposition at urban and rural sites in China[J].Atmospheric Chemistry and Physics, 2016, 16(18): 11547-11562.
    [27] MILLHOLLEN A G, GUSTIN M S, OBRIST D.Foliar mercury accumulation and exchange for three tree species[J].Environmental Science & Technology, 2006, 40(19): 6001-6006.
    [28] LODENIUS M, TULISALO E, SOLTANPOUR G A.Exchange of mercury between atmosphere and vegetation under contaminated conditions[J].Science of the Total Environment, 2003, 304(1/3): 169-174.
    [29] KHWAJA A R, BLOOM P R, BREZONIK P L.Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter[J].Environmental Science & Technology, 2006, 40(3): 844-849.
    [30] KOIKE T, KITAOKA S, ICHIE T, et al.Global environmental change in the ocean and on land[M].Tokyo:TERRAPUB, 2004:453-472.
    [31] 张艳艳, 修光利, 张大年, 等.上海市大气总汞季节变化特征及与气象条件的关系[J].环境科学与术, 2012, 35(1): 155-158.

    ZHANG Y Y, XIU G L, ZHANG D N, et al.Total gaseous mercury in ambient air of Shanghai: Its seasonal variation in relation to meteorological condition[J].Environmental Science & Technology, 2012, 35(1): 155-158(in Chinese).

    [32] DIAO C, LI J, ZHANG B, et al.Characteristics of total gaseous mercury concentrations at a coastal area of the Yangtze Delta, China[J].Journal of the Air & Waste Management Association, 2017, 67(3): 341-351.
    [33] KOWALSKI A, FRANKOWSKI M.Seasonal variability of mercury concentration in soils, buds and leaves of Acer platanoides and Tilia platyphyllos in central Poland[J].Environmental Science & Pollution Research, 2016, 23(10): 9614-9624.
    [34] RUTTER A P, SCHAUER J J, SHAFER M M, et al.Climate sensitivity of gaseous elemental mercury dry deposition to plants: Impacts of temperature, light intensity, and plant species[J].Environmental Science & Technology, 2011, 45(2):569-575.
    [35] 崔鑫, 靳雯佳, 王永杰, 等.上海市公园湖泊表层沉积物中汞的特征及其污染评价[J].长江流域资与环境, 2019, 28(3): 661-667.

    CUI X, JIN W J, WANG Y J, et al.Characteristics of mercury in surface sediments of lakes from parks in Shanghai and its encironmental pollution assessment[J].Resources and Environment in the Yangtze Basin, 2019, 28(3): 661-667(in Chinese).

    [36] YANG J, CHEN L, SHI W L, et al.Mercury distribution in sediment along urban-rural gradient around Shanghai (China): Implication for pollution history[J].Environmental Science and Pollution Research, 2015, 22(3): 1697-1704.
  • 加载中
计量
  • 文章访问数:  2154
  • HTML全文浏览数:  2154
  • PDF下载数:  75
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-19
王奇, 王永杰, 周立旻, 郑祥民. 上海市公园绿地常见落叶树木叶片汞浓度时空特征及环境意义[J]. 环境化学, 2021, (1): 232-239. doi: 10.7524/j.issn.0254-6108.2019091905
引用本文: 王奇, 王永杰, 周立旻, 郑祥民. 上海市公园绿地常见落叶树木叶片汞浓度时空特征及环境意义[J]. 环境化学, 2021, (1): 232-239. doi: 10.7524/j.issn.0254-6108.2019091905
WANG Qi, WANG Yongjie, ZHOU Limin, ZHENG Xiangmin. Temporal and spatial characteristics of mercury concentrations in leaves of common deciduous tree species in parks of Shanghai and its environmental implications[J]. Environmental Chemistry, 2021, (1): 232-239. doi: 10.7524/j.issn.0254-6108.2019091905
Citation: WANG Qi, WANG Yongjie, ZHOU Limin, ZHENG Xiangmin. Temporal and spatial characteristics of mercury concentrations in leaves of common deciduous tree species in parks of Shanghai and its environmental implications[J]. Environmental Chemistry, 2021, (1): 232-239. doi: 10.7524/j.issn.0254-6108.2019091905

上海市公园绿地常见落叶树木叶片汞浓度时空特征及环境意义

    通讯作者: 郑祥民, E-mail: xmzheng@re.ecnu.edu.cn
  • 1. 华东师范大学地理科学学院, 上海, 200241;
  • 2. 华东师范大学崇明生态研究院, 上海, 200063
基金项目:

国家自然科学基金(41771508,41871015)资助.

摘要: 植物叶片汞浓度与大气气态单质汞(GEM/Hg0)浓度的线性关系表明叶片汞浓度大小可用于指示植物生长区内GEM浓度的高低水平.通过分析上海市绿地公园(25座)中常见落叶树木樱花、水杉、法桐叶片汞浓度的时空变化特征,探究区域内GEM含量水平及分布特征.2017年5—10月对7座公园中这3种树木叶汞浓度进行连续监测,结果显示叶汞浓度与叶片生长时间呈显著线性正相关关系(P<0.01),表明叶片在生长期内不断吸收累积大气汞.而且在生长期内,3种树木叶汞浓度日累积速率(g·kg-1·d-1)具有相似的变化趋势,意味着不同树木叶汞的累积对外界环境的响应可能是一致的,除树种差异外.同年11月初,25座公园(包含上述7座)中樱花、水杉、法桐衰老叶片叶汞浓度为(54.2±12,31.8—76.7)μg·kg-1、(42.0±9,23.5—67.9)μg·kg-1、(36.1±11,21.4—60.3)μg·kg-1(平均值,范围),有显著的种间差异(P<0.01),而在中心城区和郊区间无显著差异(P>0.05).空间插值分析结果初步表明衰老叶片叶汞浓度的空间梯度差异不大,且高值区域没有完全重合.这表明了利用衰老叶片叶汞浓度反映区域GEM浓度整体水平空间分布规律存在一定的不确定性,仍需进一步深入研究.

English Abstract

参考文献 (36)

返回顶部

目录

/

返回文章
返回