TiO2-FeOOH/Mmt纳米复合材料的表面酸碱性质及光催化性能
The surface acidity and basicity and photocatalytic activity of TiO2-FeOOH/Mmt nanocomposites
-
摘要: 本研究以蒙脱石(Mmt)为基底材料,利用自组装制备技术得到TiO2-FeOOH/Mmt纳米复合材料,以亚甲基蓝为降解目标物,研究复合材料光催化降解性能.利用透射电子显微镜(TEM)、比表面积及孔隙分析仪(BET)和紫外-可见分光光度计(UV-Vis)对制备材料进行表征分析,结果表明由针铁矿和锐钛矿组成的复合材料带隙宽度减小且光响应范围得到拓宽.着重通过表面酸碱滴定实验,结合ProtoFit表面络合模型模拟软件,对光催化前后材料表面酸碱性质变化情况进行了分析,发现复合材料的lgKa值并非单层材料的简单叠加,而是复合后发生了一定的表面化学作用形成新的表面酸碱性质.复合材料具有更大的表面位密度Nt及表面化合态≡XOH含量,能使材料在表面反应过程中提供更多的表面活性物质,产生更多的自由基,间接加快目标物降解速度.且复合材料铁循环强度更大,该循环能有利反应过程中电子的转移,并维持材料表面活性.这为后期进一步研究纳米复合材料光催化降解机理提供理论依据.Abstract: In this study, montmorillonite (Mmt) was used as the base material, and TiO2-FeOOH/Mmt nanocomposites were prepared by self-assembly preparation technique. MB was used as the degradation target to study the photocatalytic degradation performance of the composite materials. Transmission electron microscope (TEM), specific surface area and porosity analyzer (BET) and ultraviolet and visible spectrophotometry (UV-Vis) were used to characterize the prepared materials. The results showed that the band gap width of composite materials composed of goethite and anatase was decreased. At the same time the light response range was widened. The surface acid-base titration experiment and ProtoFit surface complex model simulation software were used to analyze the changes in acidity and alkalinity on the surface of the material before and after photocatalysis. The lgKa of the composite was not simply superimposed, indicating that a surface chemical reaction took place to synergistically form a new surface acidity and alkalinity after composited. The composite material has higher Nt and surface compound ≡XOH content, which could make the material provide more surface active substances in the process of surface reaction, generate more free radicals, and indirectly accelerate the degradation rate of the target material. Moreover, the strength of the iron cycling of the composite material was greater, which could facilitate the electron transfer in the reaction process and maintain the surface activity of the material. This provided a theoretical basis for further research on photocatalytic degradation mechanism of nanocomposites.
-
Key words:
- nanocomposites /
- self assembly /
- surface acid-base properties /
- iron cycling
-
-
[1] TAHIR M, AMIN N A S. Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites[J]. Applied Catalysis B:Environmental, 2013, 142-143:512-522. [2] LIANG H, WANG Z, LIAO L, et al. High performance photocatalysts:Montmorillonite supported-nano TiO2 composites[J].Optik, 2017, 136:44-51. [3] STUMM W, HOHL H, DALANG F. Interaction of metal ions with hydrous oxide surfaces[J].Croatica Chemica Acta, 1976, 48:491-504. [4] SENGUPTA T, YATES M, PAPADOPOULOS K D. Metal complexation with surface-active Kemp's triacid[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 1999, 148(3):259-270. [5] 吴震生. 纳米Fe2O3和Mn2O3及其混合物表面酸碱性质和吸附行为[D].济南:济南大学, 2010. WU Z S.Surface acidity and alkalinity and adsorption behavior of nano-Fe2O3 and Mn2 [6] STACHOWICZ M, HIEMSTRA T, RIEMSDIJK W. Multi-competitive interactin of As(III) and As(V) oxyanions with Ca2+, Mg2+, and CO32- ions on goethite[J]. J. Colloid Interface Sci, 2008, 320:400-414. [7] STOLZE L, ZHANG D, GUO H, et al. Surface complexation modeling of arsenic mobilization from goethite:Interpretation of an in-situ experiment[J].Geochimica et Cosmochimica Acta, 2019, 248:274-288. [8] BONTEN L T C, GROENENBERG J E, MEESENBURG H, et al. Using advanced surface complexation models for modelling soil chemistry under forests:Solling forest, Germany[J]. Environmental Pollution, 2011, 159(10):2831-2839. [9] PAYNE T E, DAVIS J A, LUMPLIN G R, et al. Surface complexation model of uranyl sorption on Georgia kaolinite[J]. Applied Clay Science, 2004, 26(1-4):151-162. [10] VESELSKA V, FAJGAR R, ČIHALOVA S, et al. Chromate adsorption on selected soil minerals:Surface complexation modeling coupled with spectroscopic investigation[J].Journal of Hazardous Materials, 2016, 318:433-442. [11] 王震. 新型可见光催化剂的制备及其性能研究[D].杭州:浙江大学,2014. WANG Z. Preparation and properties of novel visible catalyst[D].Hangzhou:Zhejiang University,2014(in Chinese). [12] 谢裕兴, 孙振亚, 李涵, 等. 石英基多层纳米TiO2-FeOOH复合材料的制备和显微结构的表征[J]. 电子显微学报, 2017, 36(3):207-213. XIE Y X,SUN Z Y,LI H,et al.Preparation and characterization of microstructure of quartz-based multilayer nano TiO2-FeOOH composites[J].Journal of Electron Microscopy,2017, 36(3):207-213(in Chinese).
[13] SUN Z Y, HE X, DU J, et al. Synergistic effect of photocatalysis and adsorption of nano-TiO2 self-assembled onto sulfanyl/activated carbon composite[J]. Environmental Science & Pollution Research International, 2016, 23(21):1-8. [14] 吴大清, 刁桂仪, 彭金莲. 高岭石等粘土矿物对五氯苯酚的吸附及其与矿物表面化合态关系[J]. 地球化学, 2003, 32(5):501-505. WU D Q,DIAO G Y,PENG J L.Adsorption of pentachlorophenol by clay minerals such as kaolinite and its relationship with mineral surface[J].Geochemistry, 2003, 32(5):501-505(in Chinese).
[15] CHEN D, HU S J, LI G H. Preparation and photocatalytic activity of TiO2/FeOOH nanocomposite[J]. Advanced Materials Research, 2012, 535-537:219-222. [16] ETACHERI V, SEERY M K, HINDER S J, et al. Nanostructured Ti1-xSxO2-yNy Heterojunctions for efficient visible-light-induced photocatalysis[J]. Inorganic Chemistry, 2012, 51(13):7164-7173. [17] HUANG C L, ZHANG H Y, SUN Z Y, et al. Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane[J]. Science China Chemistry, 2010, 53(7):1502-1508. [18] 王徐越, 孙振亚, 谢裕兴, 等. "光催化铁循环"作用对自组装TiO2-FeOOH复合膜活性的影响[J].环境化学, 2018, 37(11):2555-2564. WANG X Y,SUN Z Y,XIE Y X, et al.Effect of "photocatalytic iron cycle" on the activity of self-assembled TiO2-FeOOH composite membrane[J].Environmental Chemistry, 2018, 37(11):2555-2564(in Chinese).
[19] 魏俊峰, 吴大清. 高岭石表面的酸碱性质[J]. 矿物学报, 2002, 22(3):207-210. WEI J F,WU D Q.Acid and alkali on the surface of kaolinite[J].Journal of Mineralogy, 2002, 22(3):207-210(in Chinese).
[20] 刘嘉. α-Fe2O3、γ-Al2O3、SiO2纳米粒子单一及其混合体系的界面化学行为[D].济南:济南大学, 2010. LIU J.Interfacial Chemical Behavior of α-Fe2O3、γ-Al2 [21] DUC M, ADEKOLA F, LEFEVRE G, et al. Influence of kinetics on the determination of the surface reactivity of oxide suspensions by acid-base titration[J]. Journal of Colloid & Interface Science, 2006, 303(1):49-55. [22] HAN J, KATZ L E. Capturing the variable reactivity of goethites in surface complexation modeling by correlating model parameters with specific surface area[J]. Geochimica et Cosmochimica Acta, 2018, 224:248-263. [23] ROZSA G, SZABO L, SCHRANTZ K, et al. Mechanistic study on thiacloprid transformation:Free radical reactions[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 343:17-25. -

计量
- 文章访问数: 2197
- HTML全文浏览数: 2197
- PDF下载数: 101
- 施引文献: 0