盐度对重金属镉的毒性影响:以太平洋牡蛎为例
Influence of Salinity on Toxicological Effects of Cadmium: A Case Study on Oyster Crassostrea gigas
-
摘要: 渤海近岸、河口海域镉(cadmium, Cd)污染严重,且盐度低于正常海水盐度,因此,有必要研究低盐对Cd毒性效应的影响。本研究以太平洋牡蛎(Crassostrea gigas)为研究对象,在正常盐度(31.4 psu)和低盐度(15.7 psu)条件下驯化后,在不同浓度的Cd (5、20、80和240 μg·L-1)海水环境中暴露7 d,通过检测牡蛎鳃中Cd和必需金属元素含量以及生物标志物,探究低盐对Cd毒性效应的影响。结果显示,Cd破坏了牡蛎鳃中钠(Na)和镁(Mg)离子平衡,而Cd和低盐复合胁迫对钾(K)含量变化存在显著交互作用。Cd和低盐均诱导牡蛎鳃氧化应激和能量代谢紊乱,低盐还影响了Cd的毒性效应,表现为Cd和低盐复合胁迫对丙二醛(malondialdehyde, MDA)含量和异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)活性的影响存在显著交互作用。综合生物标志物响应(integrated biomarker response, IBR)分析结果显示,Cd对牡蛎产生的压力随Cd暴露浓度升高不断加大;Cd和低盐复合胁迫对牡蛎产生的压力高于Cd单一胁迫,表明低盐加剧了Cd对牡蛎的毒性效应。因此,为了更全面地评估近岸海域痕量金属的环境风险,应充分考虑低盐这一环境因素对污染物毒性的影响。Abstract: Cadmium (Cd) contamination is a severe problem in the Bohai Sea (China), especially in the estuarine and coastal environments with low salinity. In this study, adult oysters Crassostrea gigas were exposed to 4 doses of Cd (5, 20, 80 and 240 μg·L-1) at either normal (31.4 psu) or low (15.7 psu) salinity for 7 days. The potential impact of low salinity on the toxicological effects of Cd was investigated by measuring the variations of Cd and essential elements and biomarkers. After exposure to Cd, Na and Mg contents in the gills were significantly increased, and a significant interaction between Cd and low salinity on the change of K contents was identified. The increases in enzymes related to oxidative stress and energy metabolism were observed after exposure to the combined Cd and low salinity. What is more, the Cd-induced toxicological effects were affected by low salinity, manifested by the significant interactive effects on the malondialdehyde (MDA) contents and isocitrate dehydrogenase (IDH) activities. Further integrated biomarker response (IBR) analysis showed that the adverse effect of Cd on oysters was exacerbated with the increase of exposure concentration. The combined effect of Cd and low salinity was much greater than that of single Cd exposure, indicating that low salinity aggravated the toxicological effects of Cd on oysters. Therefore, the impact of low salinity on the toxicity of environmental contaminants should be fully considered to comprehensively evaluate their environmental risks in the coastal zones.
-
Key words:
- cadmium /
- low salinity /
- Crassostrea gigas /
- ion homeostasis /
- oxidative stress /
- energy metabolism
-
-
Zhan J F, Wang S, Li F, et al. Dose-dependent responses of metabolism and tissue injuries in clam Ruditapes philippinarum after subchronic exposure to cadmium [J]. The Science of the Total Environment, 2021, 779: 146479 薛蓓, 张培, 李志辉, 等. 镉胁迫对脊尾白虾的毒性效应研究[J]. 生态毒理学报, 2016, 11(6): 207-213 Xue B, Zhang P, Li Z H, et al. Toxicity effects of cadmium on the ridgetail white prawn Exopalaemon carinicauda [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 207-213 (in Chinese)
Gao X L, Zhou F X, Chen C T A. Pollution status of the Bohai Sea: An overview of the environmental quality assessment related trace metals [J]. Environment International, 2014, 62: 12-30 国家环境保护局. 海水水质标准: GB 3097—1997[S]. 北京: 环境科学出版社, 2004 Xie J, Zhao Y, Wang Q, et al. An integrative biomarker approach to assess the environmental stress in the north coast of Shandong Peninsula using native oysters, Crassostrea gigas [J]. Marine Pollution Bulletin, 2016, 112(1-2): 318-326 国家质量监督检验检疫总局. 海洋生物质量: GB 18421—2001[S]. 北京: 中国标准出版社, 2004 Thévenod F. Catch me if You can! Novel aspects of cadmium transport in mammalian cells [J]. BioMetals, 2010, 23(5): 857-875 Choong G, Liu Y, Templeton D M. Interplay of calcium and cadmium in mediating cadmium toxicity [J]. Chemico-Biological Interactions, 2014, 211: 54-65 蔡荣, 郭赛男, 郑家浪. Cd2+暴露对斑马鱼肝脏和卵巢抗氧化和免疫系统的影响及蓝LED光预暴露的保护作用[J]. 生态毒理学报, 2018, 13(1): 169-178 Cai R, Guo S N, Zheng J L. Effect of cadmium exposure on antioxidant and immune responses and the ameliorative role of blue LEDs pre-exposure in the liver and ovary of zebrafish [J]. Asian Journal of Ecotoxicology, 2018, 13(1): 169-178 (in Chinese)
乔艺飘, 张龙飞, 刘欢, 等. 青蟹对As和Cd的生物富集动力学特性[J]. 生态毒理学报, 2020, 15(6): 290-299 Qiao Y P, Zhang L F, Liu H, et al. The kinetic characteristics of bioconcentration of As and Cd in Scylla paramamosain [J]. Asian Journal of Ecotoxicology, 2020, 15(6): 290-299 (in Chinese)
da Silva A O F, Martinez C B R. Acute effects of cadmium on osmoregulation of the freshwater teleost Prochilodus lineatus: Enzymes activity and plasma ions [J]. Aquatic Toxicology, 2014, 156: 161-168 Xu P, Zeng G M, Huang D L, et al. Metal bioaccumulation, oxidative stress and antioxidant defenses in Phanerochaete chrysosporium response to Cd exposure [J]. Ecological Engineering, 2016, 87: 150-156 Sokolova I M, Frederich M, Bagwe R, et al. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates [J]. Marine Environmental Research, 2012, 79: 1-15 Bao Y B, Liu X, Zhang W W, et al. Identification of a regulation network in response to cadmium toxicity using blood clam Tegillarca granosa as model [J]. Scientific Reports, 2016, 6: 35704 Wu H F, Xu L L, Yu D L, et al. Differential metabolic responses in three life stages of mussels Mytilus galloprovincialis exposed to cadmium [J]. Ecotoxicology, 2017, 26(1): 74-80 Ji C L, Lu Z, Xu L L, et al. Evaluation of mitochondrial toxicity of cadmium in clam Ruditapes philippinarum using iTRAQ-based proteomics [J]. Environmental Pollution, 2019, 251: 802-810 Blackmore G, Wang W X. Inter-population differences in Cd, Cr, Se, and Zn accumulation by the green mussel Perna viridis acclimated at different salinities [J]. Aquatic Toxicology, 2003, 62(3): 205-218 Sun M, Liu G B, Lin H, et al. Effect of salinity on the bioaccumulation and depuration of cadmium in the Pacific cupped oyster, Crassostrea gigas [J]. Environmental Toxicology and Pharmacology, 2018, 62: 88-97 迟潇, 陈碧鹃, 孙雪梅, 等. 基于IBR模型研究BDE-47和BDE-153对半滑舌鳎的毒性效应[J]. 生态毒理学报, 2020, 15(4): 192-202 Chi X, Chen B J, Sun X M, et al. Toxic effects of BDE-47 and BDE-153 on Cynoglossus semilaevis Gunther based on IBR model [J]. Asian Journal of Ecotoxicology, 2020, 15(4): 192-202 (in Chinese)
杨占宁, 丁光辉, 于源志, 等. 单壁碳纳米管对太平洋牡蛎(Crassostrea gigas)的毒性效应及生物体防御机制研究[J]. 生态毒理学报, 2019, 14(1): 90-98 Yang Z N, Ding G H, Yu Y Z, et al. Study on toxicity of single-walled carbon nanotubes (SWCNTs) to Pacific oyster (Crassostrea gigas) and the defense mechanism involved [J]. Asian Journal of Ecotoxicology, 2019, 14(1): 90-98 (in Chinese)
Fu J, Wang H, Billah S M, et al. Heavy metals in seawater, sediments, and biota from the coastal area of Yancheng City, China [J]. Environmental Toxicology and Chemistry, 2014, 33(8): 1697-1704 Beliaeff B, Burgeot T. Integrated biomarker response: A useful tool for ecological risk assessment [J]. Environmental Toxicology and Chemistry, 2002, 21(6): 1316-1322 Luo L Z, Ke C H, Guo X Y, et al. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary [J]. Fish & Shellfish Immunology, 2014, 38(2): 318-329 Huang X Z, Liu Y M, Liu Z K, et al. Impact of zinc oxide nanoparticles and ocean acidification on antioxidant responses of Mytilus coruscus [J]. Chemosphere, 2018, 196: 182-195 张钰昆, 巩宁, 车程, 等. 纳米氧化镍颗粒对长牡蛎(Crassostrea gigas)抗氧化防御体系的影响[J]. 生态毒理学报, 2019, 14(2): 268-279 Zhang Y K, Gong N, Che C, et al. Effects of nickel oxide nanoparticles on antioxidant defense system of Crassostrea gigas [J]. Asian Journal of Ecotoxicology, 2019, 14(2): 268-279 (in Chinese)
Cui W T, Cao L, Liu J H, et al. Effects of seawater acidification and cadmium on the antioxidant defense of flounder Paralichthys olivaceus larvae [J]. The Science of the Total Environment, 2020, 718: 137234 Qu R J, Wang X H, Wang Z Y, et al. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes [J]. Journal of Hazardous Materials, 2014, 275: 89-98 李亚男, 张海滨. 海洋无脊椎动物抗氧化酶研究进展[J]. 海洋通报, 2018, 37(3): 241-253 Li Y N, Zhang H B. Progress in antioxidant enzymes study of marine invertebrates [J]. Marine Science Bulletin, 2018, 37(3): 241-253 (in Chinese)
Bulat Z P, Djukić-Ćosić D, Maličević Ž, et al. Zinc or magnesium supplementation modulates Cd intoxication in blood, kidney, spleen, and bone of rabbits [J]. Biological Trace Element Research, 2008, 124(2): 110-117 Lu Z, Wang S, Ji C L, et al. iTRAQ-based proteomic analysis on the mitochondrial responses in gill tissues of juvenile olive flounder Paralichthys olivaceus exposed to cadmium [J]. Environmental Pollution, 2020, 257: 113591 Wilson J M, Laurent P, Tufts B L, et al. NaCl uptake by the branchial epithelium in freshwater teleost fish: An immunological approach to ion-transport protein localization [J]. The Journal of Experimental Biology, 2000, 203(Pt 15): 2279-2296 Calabrese E J. Overcompensation stimulation: A mechanism for hormetic effects [J]. Critical Reviews in Toxicology, 2001, 31(4-5): 425-470 吴林德, 林志华, 沈伟良, 等. Cd2+、Pb2+、Hg2+对泥蚶鳃及消化腺显微结构和超微结构的影响[J]. 海洋湖沼通报, 2015(2): 45-52 Wu L D, Lin Z H, Shen W L, et al. Effect of Cd2 +
, Pb2+, Hg2+ on the microstructure and ultrastructure of gill and hepatopancreas in Tegillaraca granosa [J]. Transactions of Oceanology and Limnology, 2015(2): 45-52 (in Chinese)Burke J, Handy R D, Roast S D. Effect of low salinity on cadmium accumulation and calcium homeostasis in the shore crab (Carcinus maenas) at fixed free Cd2+ concentrations [J]. Environmental Toxicology and Chemistry, 2003, 22(11): 2761-2767 Wu H F, Xu L L, Ji C L, et al. Proteomic and metabolomic responses in D—SHape larval mussels Mytilus galloprovincialis exposed to cadmium and arsenic [J]. Fish & Shellfish Immunology, 2016, 58: 514-520 Kültz D. Evolution of cellular stress response mechanisms [J]. Journal of Experimental Zoology Part A, Ecological and Integrative Physiology, 2020, 333(6): 359-378 Ertl N G, O’Connor W A, Elizur A. Molecular effects of a variable environment on Sydney rock oysters, Saccostrea glomerata: Thermal and low salinity stress, and their synergistic effect [J]. Marine Genomics, 2019, 43: 19-32 Bouron A, Kiselyov K, Oberwinkler J. Permeation, regulation and control of expression of TRP channels by trace metal ions [J]. Pflügers Archiv: European Journal of Physiology, 2015, 467(6): 1143-1164 Zhou Y, Xia X M, Lingle C J. Cadmium-cysteine coordination in the BK inner pore region and its structural and functional implications [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(16): 5237-5242 Bayne B L. Metabolic Expenditure [M]. London: Academic Press, 2017: 331-415 Noor M N, Wu F L, Sokolov E P, et al. Salinity-dependent effects of ZnO nanoparticles on bioenergetics and intermediate metabolite homeostasis in a euryhaline marine bivalve, Mytilus edulis [J]. The Science of the Total Environment, 2021, 774: 145195 -

计量
- 文章访问数: 2850
- HTML全文浏览数: 2850
- PDF下载数: 129
- 施引文献: 0