盐度对重金属镉的毒性影响:以太平洋牡蛎为例

王智宇, 姜爱莉, 吉成龙, 吴惠丰. 盐度对重金属镉的毒性影响:以太平洋牡蛎为例[J]. 生态毒理学报, 2022, 17(2): 299-310. doi: 10.7524/AJE.1673-5897.20211111002
引用本文: 王智宇, 姜爱莉, 吉成龙, 吴惠丰. 盐度对重金属镉的毒性影响:以太平洋牡蛎为例[J]. 生态毒理学报, 2022, 17(2): 299-310. doi: 10.7524/AJE.1673-5897.20211111002
Wang Zhiyu, Jiang Aili, Ji Chenglong, Wu Huifeng. Influence of Salinity on Toxicological Effects of Cadmium: A Case Study on Oyster Crassostrea gigas[J]. Asian journal of ecotoxicology, 2022, 17(2): 299-310. doi: 10.7524/AJE.1673-5897.20211111002
Citation: Wang Zhiyu, Jiang Aili, Ji Chenglong, Wu Huifeng. Influence of Salinity on Toxicological Effects of Cadmium: A Case Study on Oyster Crassostrea gigas[J]. Asian journal of ecotoxicology, 2022, 17(2): 299-310. doi: 10.7524/AJE.1673-5897.20211111002

盐度对重金属镉的毒性影响:以太平洋牡蛎为例

    作者简介: 王智宇(1995—),男,硕士研究生,研究方向为海洋生态毒理学,E-mail: zywang0914@163.com
    通讯作者: 姜爱莉, E-mail: jal9035@163.com 吴惠丰, E-mail: hfwu@yic.ac.cn
  • 基金项目:

    国家自然科学基金面上项目(42076164,41676114);山东省泰山学者青年专家项目(tsqn201812115)

  • 中图分类号: X171.5

Influence of Salinity on Toxicological Effects of Cadmium: A Case Study on Oyster Crassostrea gigas

    Corresponding authors: Jiang Aili, jal9035@163.com ;  Wu Huifeng, hfwu@yic.ac.cn
  • Fund Project:
  • 摘要: 渤海近岸、河口海域镉(cadmium, Cd)污染严重,且盐度低于正常海水盐度,因此,有必要研究低盐对Cd毒性效应的影响。本研究以太平洋牡蛎(Crassostrea gigas)为研究对象,在正常盐度(31.4 psu)和低盐度(15.7 psu)条件下驯化后,在不同浓度的Cd (5、20、80和240 μg·L-1)海水环境中暴露7 d,通过检测牡蛎鳃中Cd和必需金属元素含量以及生物标志物,探究低盐对Cd毒性效应的影响。结果显示,Cd破坏了牡蛎鳃中钠(Na)和镁(Mg)离子平衡,而Cd和低盐复合胁迫对钾(K)含量变化存在显著交互作用。Cd和低盐均诱导牡蛎鳃氧化应激和能量代谢紊乱,低盐还影响了Cd的毒性效应,表现为Cd和低盐复合胁迫对丙二醛(malondialdehyde, MDA)含量和异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)活性的影响存在显著交互作用。综合生物标志物响应(integrated biomarker response, IBR)分析结果显示,Cd对牡蛎产生的压力随Cd暴露浓度升高不断加大;Cd和低盐复合胁迫对牡蛎产生的压力高于Cd单一胁迫,表明低盐加剧了Cd对牡蛎的毒性效应。因此,为了更全面地评估近岸海域痕量金属的环境风险,应充分考虑低盐这一环境因素对污染物毒性的影响。
  • 加载中
  • Zhan J F, Wang S, Li F, et al. Dose-dependent responses of metabolism and tissue injuries in clam Ruditapes philippinarum after subchronic exposure to cadmium [J]. The Science of the Total Environment, 2021, 779: 146479
    薛蓓, 张培, 李志辉, 等. 镉胁迫对脊尾白虾的毒性效应研究[J]. 生态毒理学报, 2016, 11(6): 207-213

    Xue B, Zhang P, Li Z H, et al. Toxicity effects of cadmium on the ridgetail white prawn Exopalaemon carinicauda [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 207-213 (in Chinese)

    Gao X L, Zhou F X, Chen C T A. Pollution status of the Bohai Sea: An overview of the environmental quality assessment related trace metals [J]. Environment International, 2014, 62: 12-30
    国家环境保护局. 海水水质标准: GB 3097—1997[S]. 北京: 环境科学出版社, 2004
    Xie J, Zhao Y, Wang Q, et al. An integrative biomarker approach to assess the environmental stress in the north coast of Shandong Peninsula using native oysters, Crassostrea gigas [J]. Marine Pollution Bulletin, 2016, 112(1-2): 318-326
    国家质量监督检验检疫总局. 海洋生物质量: GB 18421—2001[S]. 北京: 中国标准出版社, 2004
    Thévenod F. Catch me if You can! Novel aspects of cadmium transport in mammalian cells [J]. BioMetals, 2010, 23(5): 857-875
    Choong G, Liu Y, Templeton D M. Interplay of calcium and cadmium in mediating cadmium toxicity [J]. Chemico-Biological Interactions, 2014, 211: 54-65
    蔡荣, 郭赛男, 郑家浪. Cd2+暴露对斑马鱼肝脏和卵巢抗氧化和免疫系统的影响及蓝LED光预暴露的保护作用[J]. 生态毒理学报, 2018, 13(1): 169-178

    Cai R, Guo S N, Zheng J L. Effect of cadmium exposure on antioxidant and immune responses and the ameliorative role of blue LEDs pre-exposure in the liver and ovary of zebrafish [J]. Asian Journal of Ecotoxicology, 2018, 13(1): 169-178 (in Chinese)

    乔艺飘, 张龙飞, 刘欢, 等. 青蟹对As和Cd的生物富集动力学特性[J]. 生态毒理学报, 2020, 15(6): 290-299

    Qiao Y P, Zhang L F, Liu H, et al. The kinetic characteristics of bioconcentration of As and Cd in Scylla paramamosain [J]. Asian Journal of Ecotoxicology, 2020, 15(6): 290-299 (in Chinese)

    da Silva A O F, Martinez C B R. Acute effects of cadmium on osmoregulation of the freshwater teleost Prochilodus lineatus: Enzymes activity and plasma ions [J]. Aquatic Toxicology, 2014, 156: 161-168
    Xu P, Zeng G M, Huang D L, et al. Metal bioaccumulation, oxidative stress and antioxidant defenses in Phanerochaete chrysosporium response to Cd exposure [J]. Ecological Engineering, 2016, 87: 150-156
    Sokolova I M, Frederich M, Bagwe R, et al. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates [J]. Marine Environmental Research, 2012, 79: 1-15
    Bao Y B, Liu X, Zhang W W, et al. Identification of a regulation network in response to cadmium toxicity using blood clam Tegillarca granosa as model [J]. Scientific Reports, 2016, 6: 35704
    Wu H F, Xu L L, Yu D L, et al. Differential metabolic responses in three life stages of mussels Mytilus galloprovincialis exposed to cadmium [J]. Ecotoxicology, 2017, 26(1): 74-80
    Ji C L, Lu Z, Xu L L, et al. Evaluation of mitochondrial toxicity of cadmium in clam Ruditapes philippinarum using iTRAQ-based proteomics [J]. Environmental Pollution, 2019, 251: 802-810
    Blackmore G, Wang W X. Inter-population differences in Cd, Cr, Se, and Zn accumulation by the green mussel Perna viridis acclimated at different salinities [J]. Aquatic Toxicology, 2003, 62(3): 205-218
    Sun M, Liu G B, Lin H, et al. Effect of salinity on the bioaccumulation and depuration of cadmium in the Pacific cupped oyster, Crassostrea gigas [J]. Environmental Toxicology and Pharmacology, 2018, 62: 88-97
    迟潇, 陈碧鹃, 孙雪梅, 等. 基于IBR模型研究BDE-47和BDE-153对半滑舌鳎的毒性效应[J]. 生态毒理学报, 2020, 15(4): 192-202

    Chi X, Chen B J, Sun X M, et al. Toxic effects of BDE-47 and BDE-153 on Cynoglossus semilaevis Gunther based on IBR model [J]. Asian Journal of Ecotoxicology, 2020, 15(4): 192-202 (in Chinese)

    杨占宁, 丁光辉, 于源志, 等. 单壁碳纳米管对太平洋牡蛎(Crassostrea gigas)的毒性效应及生物体防御机制研究[J]. 生态毒理学报, 2019, 14(1): 90-98

    Yang Z N, Ding G H, Yu Y Z, et al. Study on toxicity of single-walled carbon nanotubes (SWCNTs) to Pacific oyster (Crassostrea gigas) and the defense mechanism involved [J]. Asian Journal of Ecotoxicology, 2019, 14(1): 90-98 (in Chinese)

    Fu J, Wang H, Billah S M, et al. Heavy metals in seawater, sediments, and biota from the coastal area of Yancheng City, China [J]. Environmental Toxicology and Chemistry, 2014, 33(8): 1697-1704
    Beliaeff B, Burgeot T. Integrated biomarker response: A useful tool for ecological risk assessment [J]. Environmental Toxicology and Chemistry, 2002, 21(6): 1316-1322
    Luo L Z, Ke C H, Guo X Y, et al. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary [J]. Fish & Shellfish Immunology, 2014, 38(2): 318-329
    Huang X Z, Liu Y M, Liu Z K, et al. Impact of zinc oxide nanoparticles and ocean acidification on antioxidant responses of Mytilus coruscus [J]. Chemosphere, 2018, 196: 182-195
    张钰昆, 巩宁, 车程, 等. 纳米氧化镍颗粒对长牡蛎(Crassostrea gigas)抗氧化防御体系的影响[J]. 生态毒理学报, 2019, 14(2): 268-279

    Zhang Y K, Gong N, Che C, et al. Effects of nickel oxide nanoparticles on antioxidant defense system of Crassostrea gigas [J]. Asian Journal of Ecotoxicology, 2019, 14(2): 268-279 (in Chinese)

    Cui W T, Cao L, Liu J H, et al. Effects of seawater acidification and cadmium on the antioxidant defense of flounder Paralichthys olivaceus larvae [J]. The Science of the Total Environment, 2020, 718: 137234
    Qu R J, Wang X H, Wang Z Y, et al. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes [J]. Journal of Hazardous Materials, 2014, 275: 89-98
    李亚男, 张海滨. 海洋无脊椎动物抗氧化酶研究进展[J]. 海洋通报, 2018, 37(3): 241-253

    Li Y N, Zhang H B. Progress in antioxidant enzymes study of marine invertebrates [J]. Marine Science Bulletin, 2018, 37(3): 241-253 (in Chinese)

    Bulat Z P, Djukić-Ćosić D, Maličević Ž, et al. Zinc or magnesium supplementation modulates Cd intoxication in blood, kidney, spleen, and bone of rabbits [J]. Biological Trace Element Research, 2008, 124(2): 110-117
    Lu Z, Wang S, Ji C L, et al. iTRAQ-based proteomic analysis on the mitochondrial responses in gill tissues of juvenile olive flounder Paralichthys olivaceus exposed to cadmium [J]. Environmental Pollution, 2020, 257: 113591
    Wilson J M, Laurent P, Tufts B L, et al. NaCl uptake by the branchial epithelium in freshwater teleost fish: An immunological approach to ion-transport protein localization [J]. The Journal of Experimental Biology, 2000, 203(Pt 15): 2279-2296
    Calabrese E J. Overcompensation stimulation: A mechanism for hormetic effects [J]. Critical Reviews in Toxicology, 2001, 31(4-5): 425-470
    吴林德, 林志华, 沈伟良, 等. Cd2+、Pb2+、Hg2+对泥蚶鳃及消化腺显微结构和超微结构的影响[J]. 海洋湖沼通报, 2015(2): 45-52 Wu L D, Lin Z H, Shen W L, et al. Effect of Cd2

    +, Pb2+, Hg2+ on the microstructure and ultrastructure of gill and hepatopancreas in Tegillaraca granosa [J]. Transactions of Oceanology and Limnology, 2015(2): 45-52 (in Chinese)

    Burke J, Handy R D, Roast S D. Effect of low salinity on cadmium accumulation and calcium homeostasis in the shore crab (Carcinus maenas) at fixed free Cd2+ concentrations [J]. Environmental Toxicology and Chemistry, 2003, 22(11): 2761-2767
    Wu H F, Xu L L, Ji C L, et al. Proteomic and metabolomic responses in D—SHape larval mussels Mytilus galloprovincialis exposed to cadmium and arsenic [J]. Fish & Shellfish Immunology, 2016, 58: 514-520
    Kültz D. Evolution of cellular stress response mechanisms [J]. Journal of Experimental Zoology Part A, Ecological and Integrative Physiology, 2020, 333(6): 359-378
    Ertl N G, O’Connor W A, Elizur A. Molecular effects of a variable environment on Sydney rock oysters, Saccostrea glomerata: Thermal and low salinity stress, and their synergistic effect [J]. Marine Genomics, 2019, 43: 19-32
    Bouron A, Kiselyov K, Oberwinkler J. Permeation, regulation and control of expression of TRP channels by trace metal ions [J]. Pflügers Archiv: European Journal of Physiology, 2015, 467(6): 1143-1164
    Zhou Y, Xia X M, Lingle C J. Cadmium-cysteine coordination in the BK inner pore region and its structural and functional implications [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(16): 5237-5242
    Bayne B L. Metabolic Expenditure [M]. London: Academic Press, 2017: 331-415
    Noor M N, Wu F L, Sokolov E P, et al. Salinity-dependent effects of ZnO nanoparticles on bioenergetics and intermediate metabolite homeostasis in a euryhaline marine bivalve, Mytilus edulis [J]. The Science of the Total Environment, 2021, 774: 145195
  • 加载中
计量
  • 文章访问数:  2850
  • HTML全文浏览数:  2850
  • PDF下载数:  129
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-11
王智宇, 姜爱莉, 吉成龙, 吴惠丰. 盐度对重金属镉的毒性影响:以太平洋牡蛎为例[J]. 生态毒理学报, 2022, 17(2): 299-310. doi: 10.7524/AJE.1673-5897.20211111002
引用本文: 王智宇, 姜爱莉, 吉成龙, 吴惠丰. 盐度对重金属镉的毒性影响:以太平洋牡蛎为例[J]. 生态毒理学报, 2022, 17(2): 299-310. doi: 10.7524/AJE.1673-5897.20211111002
Wang Zhiyu, Jiang Aili, Ji Chenglong, Wu Huifeng. Influence of Salinity on Toxicological Effects of Cadmium: A Case Study on Oyster Crassostrea gigas[J]. Asian journal of ecotoxicology, 2022, 17(2): 299-310. doi: 10.7524/AJE.1673-5897.20211111002
Citation: Wang Zhiyu, Jiang Aili, Ji Chenglong, Wu Huifeng. Influence of Salinity on Toxicological Effects of Cadmium: A Case Study on Oyster Crassostrea gigas[J]. Asian journal of ecotoxicology, 2022, 17(2): 299-310. doi: 10.7524/AJE.1673-5897.20211111002

盐度对重金属镉的毒性影响:以太平洋牡蛎为例

    通讯作者: 姜爱莉, E-mail: jal9035@163.com ;  吴惠丰, E-mail: hfwu@yic.ac.cn
    作者简介: 王智宇(1995—),男,硕士研究生,研究方向为海洋生态毒理学,E-mail: zywang0914@163.com
  • 1. 烟台大学生命科学学院,烟台 264005;
  • 2. 中国科学院烟台海岸带研究所,中国科学院海岸带环境过程与生态修复重点实验室,山东省海岸带环境过程重点实验室,烟台 264003
基金项目:

国家自然科学基金面上项目(42076164,41676114);山东省泰山学者青年专家项目(tsqn201812115)

摘要: 渤海近岸、河口海域镉(cadmium, Cd)污染严重,且盐度低于正常海水盐度,因此,有必要研究低盐对Cd毒性效应的影响。本研究以太平洋牡蛎(Crassostrea gigas)为研究对象,在正常盐度(31.4 psu)和低盐度(15.7 psu)条件下驯化后,在不同浓度的Cd (5、20、80和240 μg·L-1)海水环境中暴露7 d,通过检测牡蛎鳃中Cd和必需金属元素含量以及生物标志物,探究低盐对Cd毒性效应的影响。结果显示,Cd破坏了牡蛎鳃中钠(Na)和镁(Mg)离子平衡,而Cd和低盐复合胁迫对钾(K)含量变化存在显著交互作用。Cd和低盐均诱导牡蛎鳃氧化应激和能量代谢紊乱,低盐还影响了Cd的毒性效应,表现为Cd和低盐复合胁迫对丙二醛(malondialdehyde, MDA)含量和异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)活性的影响存在显著交互作用。综合生物标志物响应(integrated biomarker response, IBR)分析结果显示,Cd对牡蛎产生的压力随Cd暴露浓度升高不断加大;Cd和低盐复合胁迫对牡蛎产生的压力高于Cd单一胁迫,表明低盐加剧了Cd对牡蛎的毒性效应。因此,为了更全面地评估近岸海域痕量金属的环境风险,应充分考虑低盐这一环境因素对污染物毒性的影响。

English Abstract

参考文献 (41)

返回顶部

目录

/

返回文章
返回