渭河流域典型农药污染特征及生态风险评估
Pollution Characteristics and Ecological Risk Assessment of Typical Pesticides in Weihe River Basin
-
摘要: 农药污染被认为是导致淡水生态系统中生物多样性丧失的重要因素之一。渭河是黄河最大的支流,也是我国重要的粮食生产区,农业生产和水生态环境保护受到农药污染的威胁。然而,目前流域内农药污染特点和生态风险鲜有报道,需重点管控的农药清单尚不清楚。本研究通过对渭河流域地表水中典型农药的调查分析,并采用商值法、概率法以及混合风险评估等方法进行多层级生态风险评价。结果表明,氨基甲酸酯、新烟碱、有机磷及三嗪类农药的总浓度最高分别达3 000、2 390、4 720和125 ng·L-1。农药的季节性使用以及河流径流变化可能导致平水期和枯水期农药污染水平差异,农药污染总体水平枯水期>平水期。风险评估结果表明,吡虫啉、环嗪酮、莠去津、西玛津在不同水期均表现出较高生态风险,其中平水期风险商值最高达36.155,枯水期达111.25。优先级指数在5.67~36.16(平水期)及13.20~108.47(枯水期)范围内。联合概率风险评估结果显示,西玛津、吡虫啉、灭多威分别对9%~99%、4%~25%、5%~62%的物种造成中度风险。混合风险评估结果表明,平水期77%和枯水期70%的采样点位存在生态风险,关中平原的清河、横水河流域风险较高。本研究分析了地表水农药污染水平、分布特征和生态风险,明确了高风险农药,为渭河流域农药风险管控以及流域内水生物多样性保护提供了基础支撑。Abstract: Pesticide pollution is recognized as a major driver of biodiversity loss in freshwater ecosystems. As the largest tributary of the Yellow River and a key grain-producing region in China, the Weihe River faces significant threats from pesticide contamination, threatening both agricultural productivity and aquatic ecosystem conservation. However, the characteristics and ecological risks of pesticide pollution in this basin remain largely unreported, and priority pesticides requiring regulatory attention have yet to be identified. This study systematically investigated typical pesticides in surface water from the Weihe River Basin and conducted a multi-tiered ecological risk assessment using risk quotient, probabilistic, and mixture risk analysis methods. Results showed that the total concentrations of carbamates, neonicotinoids, organophosphates, and triazines reached 3 000, 2 390, 4 720, and 125 ng·L-1, respectively. Seasonal variations in pesticide application and river runoff influenced pollution levels, with contamination being more severe in the dry season than in the normal season. Risk assessment identified imidacloprid, chlorotoluron, atrazine, and simazine as high-risk pesticides across seasons, with maximum risk quotient values reaching 36.155 (normal season) and 111.25 (dry season). Priority index values ranged from 5.67 to 36.16 in the normal season and 13.20 to 108.47 in the dry season. Joint probability analysis indicated that simazine, imidacloprid, and methomyl posed moderate risks to 9%~99%, 4%~25%, and 5%~62% of species, respectively. Mixture risk analysis further revealed that 77% of sampling sites in the normal season and 70% in the dry season exhibited ecological risks, with the Qinghe and Hengshui River basins in the Guanzhong Plain being particularly affected. This study provides a comprehensive assessment of pesticide pollution levels, spatial distribution patterns, and ecological risks in the Weihe River Basin, identifies high-risk pesticides, and offers a scientific basis for pesticide risk management and aquatic biodiversity conservation.
-
-
MCKNIGHT U S, RASMUSSEN J J, KRONVANG B, et al. Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams[J]. Environmental pollution, 2015, 200: 64-76. RUAN W F, PENG Y Q, LIAO R M, et al. Removal, transformation and ecological risk assessment of pesticide in rural wastewater by field-scale horizontal flow constructed wetlands of treated effluent[J]. Water research, 2024, 256: 121568. GIL J. Targeting pesticide pollution[J]. Nature food, 2023, 4(2): 135. SYLVESTER F, WEICHERT F G, LOZANO V L, et al.Better integration of chemical pollution research will further our understanding of biodiversity loss[J]. Nature ecology & evolution, 2023, 7(10): 1552-1555. SIGMUND G, ÅGERSTRAND M, ANTONELLI A, et al. Addressing chemical pollution in biodiversity research[J]. Global change biology, 2023, 29(12): 3240-3255. SCHÄFER R B, KVHN B, MALAJ E, et al. Contribution of organic toxicants to multiple stress in river ecosystems[J]. Freshwater biology, 2016, 61(12): 2116-2128. SHARMA A, KUMAR V, SHAHZAD B, et al. Worldwide pesticide usage and its impacts on ecosystem[J]. SN applied sciences, 2019, 1(11): 1446. TANG F H M, LENZEN M, MCBRATNEY A, et al. Risk of pesticide pollution at the global scale[J]. Nature geoscience, 2021, 14(4): 206-210. GUO X Y, LUO Y, DU C, et al. Pollution characteristics, sources and ecological risks of typical pesticides inDongting Lake Basin[J]. Chinese science bulletin, 2024. https://doi.org/10.1360/TB-2024-0595. 徐雄, 李春梅, 孙静, 等. 我国重点流域地表水中29种农药污染及其生态风险评价[J]. 生态毒理学报, 2016, 11(2): 347-354. XU X, LI C M, SUN J, et al. Residue characteristics and ecological risk assessment of twenty-nine pesticides in surface water of major river-basin in China[J]. Asian journal of ecotoxicology, 2016, 11(2): 347-354.
万晨洁, 余益军, 张莉, 等. 太湖有机污染物的生态风险研究[J]. 南京大学学报(自然科学), 2017, 53(2): 256-264.WAN C J, YU Y J, ZHANG L, et al. Screening level ecological risk assessment of organic pollutants in Tai Lake[J]. Journal of Nanjing University (natural sciences), 2017, 53(2): 256-264. CHEN Y H, YU K F, HASSAN M, et al. Occurrence, distribution and risk assessment of pesticides in a river-reservoir system[J]. Ecotoxicology and environmental safety, 2018, 166: 320-327. 曹玲, 刘沁雨, 郑豪杰, 等. 农药对两栖动物的生态风险评估研究进展[J]. 农药学学报, 2021, 23(3): 456-468. CAO L, LIU Q Y, ZHENG H J, et al. Research progress on ecological risk assessment of pesticides to amphibians[J]. Chinese journal of pesticide science, 2021, 23(3): 456-468.
JIAO C, CHEN L, SUN C, et al. Evaluating national ecological risk of agricultural pesticides from 2004 to 2017 in China[J]. Environmental pollution, 2020, 259: 113778. MALAJ E, VON DER OHE P C, GROTE M, et al. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(26): 9549-9554. STEHLE S, SCHULZ R. Agricultural insecticides threaten surface waters at the global scale[J]. Proceedings of theNational Academy of Sciences of the United States of America, 2015, 112(18): 5750-5755. SOLOMON K R. A brief history of risk assessment for agrochemicals[J]. Pure and applied chemistry, 2024, 96(11): 1643-1654. 赵建亮, 应光国, 魏东斌, 等. 水体和沉积物中毒害污染物的生态风险评价方法体系研究进展[J]. 生态毒理学报, 2011, 6(6): 577-588. ZHAO J L, YING G G, WEI D B, et al. Ecological risk assessment methodology of toxic pollutants in surface water and sediments: a review[J]. Asian journal of ecotoxicology, 2011, 6(6): 577-588.
POSTHUMA L, VAN GILS J, ZIJP M C, et al. Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12386 chemicals[J]. Environmental toxicology and chemistry, 2019, 38(4): 905-917. 周艳明, 姜辉, 袁善奎, 等. 农药环境风险评估技术体系发展动态[J]. 现代农药, 2023, 22(4): 21-28. ZHOU Y M, JIANG H, YUAN S K, et al. Development trends of pesticide environmental risk assessment technology[J]. Modern agrochemicals, 2023, 22(4): 21-28.
TOPPING C J, ALDRICH A, BERNY P. Overhaul environmental risk assessment for pesticides[J]. Science, 2020, 367(6476): 360-363. MONTICELLIBARIZON R R, KUMMROW F, FERNANDES DE ALBUQUERQUE A, et al. Surface water contamination from pesticide mixtures and risks to aquatic life in a high-input agricultural region of Brazil[J]. Chemosphere, 2022, 308: 136400. LIU N, JIN X W, YAN Z, et al. Occurrence and multiple-level ecological risk assessment of pharmaceuticals and personal care products (PPCPs) in two shallow lakes of China[J]. Environmental sciences Europe, 2020, 32(1): 69. ZHOU S B, DI PAOLO C, WU X D, et al. Optimization of screening-level risk assessment and priority selection of emerging pollutants—the case of pharmaceuticals in European surface waters[J]. Environment international, 2019, 128: 1-10. JIN X W, HOU L, LIU N, et al. Bridging the gap: advancing ecological risk assessment from laboratory predictions to ecosystem reality[J]. Environmental science & technology, 2024, 58(42): 18447-18449. WUEPPER D, TANG F H M, FINGER R. National leverage points to reduce global pesticide pollution[J]. Global environmental change, 2023, 78: 102631. XU J J, GAO X C, YANG Z Y, et al. Trend and attribution analysis of runoff changes in the Weihe River Basin in the last 50 years[J]. Water, 2022, 14(1): 47. SONG J X, TANG B, ZHANG J L, et al. System dynamics simulation for optimal stream flow regulations under consideration of coordinated development of ecology and socio-economy in the Weihe River Basin, China[J]. Ecological engineering, 2018, 124: 51-68. ZHANG C, LI J, ZHOU Z X, et al. Application of ecosystem service flows model in water security assessment: a case study in Weihe River Basin, China[J]. Ecological indicators, 2021, 120: 106974. ZHANG Q, YANG T, WAN X H, et al. Community characteristics of benthic macroinvertebrates and identification of environmental driving factors in rivers in semi-arid areas—a case study of Wei River Basin, China[J]. Ecological indicators, 2021, 121: 107153. 张辉, 陈琛, 刘泽乾, 等. 岷江上中游水体中农药的污染特征研究[J]. 环境科学研究, 2024, 37(12): 2676-2686. ZHANG H, CHEN C, LIU Z Q, et al. Pesticide pollution characteristics in the upper and middle reaches of the Minjiang River[J]. Research of environmental sciences, 2024, 37(12): 2676-2686.
CHEN Y C, ZANG L, LIU M D, et al. Ecological risk assessment of the increasing use of the neonicotinoid insecticides along the east coast of China[J]. Environment international, 2019, 127: 550-557. LIU X C, CAO J, ZHAO W Y, et al. Pollution of organophosphorus pesticides in the Dongting Lake, China and its relationship with dissolved organic matter: occurrence, source identification and risk assessment[J]. Environmental research, 2024, 263: 120162. CHEN M, JIN X W, GUO C S, et al. Micropollutants but high risks:human multiple stressors increase risks of freshwater ecosystems at the megacity-scale[J]. Journal of hazardous materials, 2023, 460: 132497. CHEN M, HONG Y J, JIN X W, et al. Ranking the risks of eighty pharmaceuticals in surface water of a megacity: a multilevel optimization strategy[J]. Science of the total environment, 2023, 878: 163184. 金小伟, 王业耀, 王子健. 淡水水生态基准方法学研究: 数据筛选与模型计算[J]. 生态毒理学报, 2014, 9(1): 1-13. JIN X W, WANG Y Y, WANG Z J. Methodologies for deriving aquatic life criteria (ALC): data screening and model calculating[J]. Asian journal of ecotoxicology, 2014, 9(1): 1-13.
刘娜, 金小伟, 王业耀, 等. 生态毒理数据筛查与评价准则研究[J]. 生态毒理学报, 2016, 11(3): 1-10. LIU N, JIN X W, WANG Y Y, et al. Review of criteria for screening and evaluating ecotoxicity data[J]. Asian journal of ecotoxicology, 2016, 11(3): 1-10.
LIU N, JIN X W, FENG C L, et al. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: a proposed multiple-level system[J]. Environment international, 2020, 136: 105454. WANG Z Y, LI Z Y, LOU Q, et al. Ecological risk assessment of 50 emerging contaminants in surface water of the Greater Bay Area, China[J]. Science of the total environment, 2024, 907: 168105. KIM J Y, JEON J, KIM S D. Prioritization of pharmaceuticals and personal care products in the surface waters of Korea: application of an optimized risk-based methods[J]. Ecotoxicology and environmental safety, 2023, 259: 115024. PALMA P, KÖCK-SCHULMEYER M, ALVARENGA P, et al. Risk assessment of pesticides detected in surface water of the Alqueva Reservoir (Guadiana Basin, southern of Portugal)[J]. Science of the total environment, 2014, 488: 208-219. CLEMOW Y H, MANNING G E, BRETON R L, et al. A refined ecological risk assessment for California red-legged frog, Delta smelt, and California tiger salamander exposed to malathion[J]. Integrated environmental assessment and management, 2018, 14(2): 224-239. SUN H W, GIESY J P, JIN X W, et al. Tiered probabilistic assessment of organohalogen compounds in the Han River and Danjiangkou Reservoir, Central China[J]. Science of the total environment, 2017, 586: 163-173. WEISNER O, FRISCHE T, LIEBMANN L, et al. Risk from pesticide mixtures—the gap between risk assessment and reality[J]. Science of the total environment, 2021, 796: 149017. ALTENBURGER R, SCHOLZE M, BUSCH W, et al. Mixture effects in samples of multiple contaminants—an inter-laboratory study with manifold bioassays[J]. Environment international, 2018, 114: 95-106. LUO Y, JIN X W, ZHAO J L, et al. Ecological implications and drivers of emerging contaminants in Dongting Lake of Yangtze River Basin, China: a multi-substance risk analysis[J]. Journal of hazardous materials, 2024, 472: 134519. MUNZ N A, BURDON F J, DE ZWART D, et al. Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions[J]. Water research, 2017, 110: 366-377. 王东, 张晓, 李传霞, 等. 烟碱乙酰胆碱受体作用剂在卫生害虫防治领域的应用及展望[J]. 中国媒介生物学及控制杂志, 2020, 31(6): 744-748. WANG D, ZHANG X, LI C X, et al. Application and prospect of insecticides targeting nicotinic acetylcholine receptors in control of sanitary pests[J]. Chinese journal of vector biology and control, 2020, 31(6): 744-748.
王啸宇, 张亚辉, 张瑾, 等. 基于文献计量学的新烟碱类农药毒性研究进展[J]. 环境科学研究, 2024, 37(9): 2042-2053. WANG X Y, ZHANG Y H, ZHANG J, et al. Progress in research on toxicity of neonicotinoid insecticides based on bibliometrics[J]. Research of environmental sciences, 2024, 37(9): 2042-2053.
汝少国, 王懿, 张晓娜, 等. 三嗪类除草剂对水生动物的毒性效应及其降解方法研究进展[J]. 中国海洋大学学报(自然科学版), 2022, 52(6): 1-12.RU S G, WANG Y, ZHANG X N, et al. Toxic effects of triazine herbicides on aquatic animals and their degradation method[J]. Periodical of Ocean University of China, 2022, 52(6): 1-12. 郭婕, 张燕, 胡振国, 等. 环境水样中农药污染分析技术研究进展[J]. 岩矿测试, 2021, 40(1): 16-32. GUO J, ZHANG Y, HU Z G, et al. A review of pesticide pollution analysis techniques for environmental water samples[J]. Rock and mineral analysis, 2021, 40(1): 16-32.
CIMINO A M, BOYLES A L, THAYER K A, et al. Effects of neonicotinoid pesticide exposure on human health: a systematic review[J]. Environmental health perspectives, 2017, 125(2): 155-162. IHARA M, MATSUDA K. Neonicotinoids: molecular mechanisms of action, insights into resistance and impact on pollinators[J]. Current opinion in insect science, 2018, 30: 86-92. MORRISSEY C A, MINEAU P, DEVRIES J H, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review[J]. Environment international, 2015, 74: 291-303. LIU Z K, ZHANG L M, ZHANG Z L, et al. A review of spatiotemporal patterns of neonicotinoid insecticides in water, sediment, and soil across China[J]. Environmental science and pollution research international, 2022, 29(37): 55336-55347. LIU Y, ZHANG M, WU Y, et al. Profiles, drivers, and prioritization of antibiotics in China’s major rivers[J]. Journal of hazardous materials, 2024, 477: 135399. 王未, 黄从建, 张满成, 等. 我国区域性水体农药污染现状研究分析[J]. 环境保护科学, 2013, 39(5): 5-9. WANG W, HUANG C J, ZHANG M C, et al. Study on status of regional water pollution by pesticides in China[J]. Environmental protection science, 2013, 39(5): 5-9.
周怡彤, 李清雪, 王斌, 等. 太湖流域西北部地表水中农药的污染特征及生态风险评价[J]. 生态毒理学报, 2020, 15(3): 171-183. ZHOU Y T, LI Q X, WANG B, et al. Distribution and ecotoxicological risk assessment of pesticides in surface water of the northwest of Taihu Lake basin[J]. Asian journal of ecotoxicology, 2020, 15(3): 171-183.
何姝, 董慧峪, 任南琪. 我国东南地区饮用水源地多种农药的赋存特征及健康风险评估[J]. 环境科学, 2023, 44(1): 180-188. HE S, DONG H Y, REN N Q. Occurrence and health risk assessment of multiple pesticides in drinking water sources of southeast China[J]. Environmental science, 2023, 44(1): 180-188.
MENG S L, LI M X, LU Y, et al. Effect of environmental level of methomyl on hatching, morphology, immunity and development related genes expression in zebrafish (Danio rerio) embryo[J]. Ecotoxicology and environmental safety, 2023, 268: 115684. LI M X, CHEN X, SONG C, et al. Sub-chronically exposing zebrafish to environmental levels of methomyl induces dysbiosis and dysfunction of the gut microbiota[J]. Environmental research, 2024, 261: 119674. ZHENG Y, FATEH B, XU G C. Effects of methomyl on the intestinal microbiome and hepatic transcriptome of tilapia, and the modifying effects of mint co-culture[J]. Aquatic toxicology, 2023, 263: 106675. 陆妍, 孟顺龙, 陈家长. 灭多威的污染现状及其对水生生物的毒性效应研究进展[J]. 中国农学通报, 2021, 37(24): 139-145. LU Y, MENG S L, CHEN J C. Methomyl: pollution status and its toxic effect on aquatic organisms[J]. Chinese agricultural science bulletin, 2021, 37(24): 139-145.
QIN R H, WEI Z Y, HUANG Y Y, et al. Large geographical scale study on the concentrations, distribution, and source analysis of neonicotinoid insecticides in surface waters of South China[J]. ACS ES&T water, 2024, 4(1): 68-78. YI X H, ZHANG C, LIU H B, et al. Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China[J]. Environmental pollution, 2019, 251: 892-900. 王磊, 邓洋慧, 罗莹, 等. 鄱阳湖流域典型新烟碱类杀虫剂的污染特征和风险评估[J]. 湖泊科学, 2023, 35(3): 909-921. WANG L, DENG Y H, LUO Y, et al. Occurrence and risk assessment of typical neonicotinoid pesticides in Lake Poyang Basin[J]. Journal of lake sciences, 2023, 35(3): 909-921.
杨虎成, 莫春雷, 李亚云, 等. 吡虫啉的本土物种敏感性分布及水质基准研究[J]. 湖泊科学, 2024, 36(1): 177-186. YANG H C, MO C L, LI Y Y, et al. Native species sensitivity distribution and water quality criteria for imidacloprid[J]. Journal of lake sciences, 2024, 36(1): 177-186.
谭华东, 王传咪, 吴秋敏, 等. 基于种间关系预测评估稻菜轮作区地表水中吡虫啉的生态风险[J]. 农药学学报, 2022, 24(6): 1473-1483. TAN H D, WANG C M, WU Q M, et al. Ecological risk assessment of imidacloprid in surface water from rice-vegetable rotation areas by using interspecies correlation estimation[J]. Chinese journal of pesticide science, 2022, 24(6): 1473-1483.
LIAO L Z, SUN T, GAO Z H, et al. Neonicotinoids as emerging contaminants in China’s environment: a review of current data[J]. Environmental science and pollution research international, 2024, 31(39): 51098-51113. YAN X T, CAI Y Y, ZHANG Q Q, et al. Neonicotinoid insecticides in a large-scale agricultural basin system—use, emission, transportation, and their contributions to the ecological risks in the Pearl River Basin, China[J]. Science of the total environment, 2024, 948: 174392. ZHU X H, LIU S Y, GAO X F, et al. Typical emerging contaminants in sewage treatment plant effluent, and related watersheds in the Pearl River Basin:ecological risks and source identification[J]. Journal of hazardous materials, 2024, 476: 135046. WANG Y, WAN Y J, LI S L, et al. Occurrence, spatial variation, seasonal difference, and risk assessment of neonicotinoid insecticides, selected agriculture fungicides, and their transformation products in the Yangtze River, China:from the upper to lower reaches[J]. Water research, 2023, 247: 120724. ZHANG X P, ZHANG Y Y, MAI L, et al. Selected antibiotics and current-use pesticides in riverine runoff of an urbanized river system in association with anthropogenic stresses[J]. Science of the total environment, 2020, 739: 140004. OUYANG W, CAI G Q, TYSKLIND M, et al. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed[J]. Water research, 2017, 122: 377-386. WANG T L, ZHONG M M, LU M L, et al. Occurrence, spatiotemporal distribution, and risk assessment of current-use pesticides in surface water: a case study near Taihu Lake, China[J]. Science of the total environment, 2021, 782: 146826. WAN J, ZHANG L W, YAN J P, et al. Spatial-temporal characteristics and influencing factors of coupled coordination between urbanization and eco-environment: a case study of 13 urban agglomerations in China[J]. Sustainability, 2020, 12(21): 8821. MITRA S, SARAN R K, SRIVASTAVA S, et al. Pesticides in the environment:degradation routes, pesticide transformation products and ecotoxicological considerations[J]. Science of the total environment, 2024, 935: 173026. PERIS A, BARBIERI M V, POSTIGO C, et al. Pesticides in sediments of the Ebro River Delta cultivated area (NE Spain): occurrence and risk assessment for aquatic organisms[J]. Environmental pollution, 2022, 305: 119239. ITURBURU F G, ZÖMISCH M, PANZERI A M, et al. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus[J]. Environmental toxicology and chemistry, 2017, 36(3): 699-708. MA X, XIONG J J, LI H Z, et al. Long-term exposure to neonicotinoid insecticide acetamiprid at environmentally relevant concentrations impairs endocrine functions in zebrafish:bioaccumulation, feminization, and transgenerational effects[J]. Environmental science & technology, 2022, 56(17): 12494-12505. SMITH P N, ARMBRUST K L, BRAIN R A, et al. Assessment of risks to listed species from the use of atrazine in the USA: a perspective[J]. Journal of toxicology and environmental health, part B, 2021, 24(6): 223-306. CRAGIN L A, KESNER J S, BACHAND A M, et al. Menstrual cycle characteristics and reproductive hormone levels in women exposed to atrazine in drinking water[J]. Environmental research, 2011, 111(8): 1293-1301. COOPER R L, LAWS S C, DAS P C, et al. Atrazine and reproductive function:mode and mechanism of action studies[J]. Birth defects research part B, developmental and reproductive toxicology, 2007, 80(2): 98-112. ZHANG L, SONG Z W, HE L, et al. Unveiling the toxicological effects and risks of prometryn on red swamp crayfish (Procambarus clarkii): health assessments, ecological, and molecular insights[J]. Science of the total environment, 2024, 951: 175512. 李建勋, 李明万, 刘晓雨, 等. 渭河流域陕西段农业面源污染空间分布及特征分析[J]. 中国环境监测, 2024, 40(6): 122-132. LI J X, LI M W, LIU X Y, et al. Spatial distribution and characteristics analysis of agricultural non-point source pollution in Shaanxi section of the Weihe basin[J]. Environmental monitoring in China, 2024, 40(6): 122-132.
NSABIMANA A, LI P Y. Hydrogeochemical characterization and appraisal of groundwater quality for industrial purpose using a novel industrial water quality index (IndWQI) in the Guanzhong Basin, China[J]. Geochemistry, 2023, 83(1): 125922. WOLFRAM J, STEHLE S, BUB S, et al. Water quality and ecological risks in European surface waters—monitoring improves while water quality decreases[J]. Environment international, 2021, 152: 106479. ZHANG Y F, BIAN Z X, GUO X Y, et al. Strategic land management for ecosystem sustainability: scenario insights from the northeast black soil region[J]. Ecological indicators, 2024, 168: 112784. LIU Y B, LIU J, YIN X J, et al. Human activities and ecosystem health: a historical analysis of Poyang Lake[J]. Ecological indicators, 2024, 166: 112446. -

计量
- 文章访问数: 150
- HTML全文浏览数: 150
- PDF下载数: 51
- 施引文献: 0