微塑料和高脂饮食暴露对小鼠非酒精性脂肪肝病的影响:肠道菌群与代谢组学研究

赵雪, 徐旭龙, 王贝贝, 卢坤, 黄陶, 沈昕, 晏彪, 沈定文. 微塑料和高脂饮食暴露对小鼠非酒精性脂肪肝病的影响:肠道菌群与代谢组学研究[J]. 生态毒理学报, 2025, 20(1): 314-328. doi: 10.7524/AJE.1673-5897.20240913001
引用本文: 赵雪, 徐旭龙, 王贝贝, 卢坤, 黄陶, 沈昕, 晏彪, 沈定文. 微塑料和高脂饮食暴露对小鼠非酒精性脂肪肝病的影响:肠道菌群与代谢组学研究[J]. 生态毒理学报, 2025, 20(1): 314-328. doi: 10.7524/AJE.1673-5897.20240913001
ZHAO Xue, XU Xulong, WANG Beibei, LU Kun, HUANG Tao, SHEN Xin, YAN Biao, SHEN Dingwen. Impact of Microplastic and High-Fat Diet Exposure on Non-Alcoholic Fatty Liver Disease in Mice: A Study of Gut Microbiota and Metabolomics[J]. Asian journal of ecotoxicology, 2025, 20(1): 314-328. doi: 10.7524/AJE.1673-5897.20240913001
Citation: ZHAO Xue, XU Xulong, WANG Beibei, LU Kun, HUANG Tao, SHEN Xin, YAN Biao, SHEN Dingwen. Impact of Microplastic and High-Fat Diet Exposure on Non-Alcoholic Fatty Liver Disease in Mice: A Study of Gut Microbiota and Metabolomics[J]. Asian journal of ecotoxicology, 2025, 20(1): 314-328. doi: 10.7524/AJE.1673-5897.20240913001

微塑料和高脂饮食暴露对小鼠非酒精性脂肪肝病的影响:肠道菌群与代谢组学研究

    作者简介: 赵雪(1999—),女,硕士研究生,研究方向为药理学与毒理学,E-mail:zx17782130875@126.com
    通讯作者: 沈昕,E-mail:shenxin1992@hbust.edu.cn; 
  • 基金项目:

    湖北省教育厅科学研究计划青年人才项目(Q20232804)

    湖北科技学院校级项目(BK202319)

  • 中图分类号: X171.5

Impact of Microplastic and High-Fat Diet Exposure on Non-Alcoholic Fatty Liver Disease in Mice: A Study of Gut Microbiota and Metabolomics

    Corresponding author: SHEN Xin, shenxin1992@hbust.edu.cn
  • Fund Project:
  • 摘要: 非酒精性脂肪肝病(NAFLD)是全球最常见的慢性肝病之一,与环境因素相关。本研究探讨了聚苯乙烯微塑料(PS)与高脂饲料(HFD)联合作用对NAFLD进展的影响,旨在揭示PS在NAFLD发生中的作用,对理解NAFLD的环境诱因具有重要意义。48只雄性C57BL/6J小鼠随机分为4组:空白对照组、HFD组、PS暴露组、HFD+PS联合组,连续处理8周。通过监测小鼠体质量、血糖、口服糖耐量测试(OGTT)、胰岛素耐量测试(ITT),并检测血清生化指标,评估肝脏和肠道组织病理学变化;同时,采用16S rRNA高通量测序分析肠道微生物群结构变化,以及进行代谢组学分析。研究发现,HFD+PS组小鼠体质量增长最快,血糖波动显著,血脂异常加剧。病理学结果显示肠道黏膜损伤和肝脏脂质沉积增加。肠道微生物群结构分析表明,HFD和PS联合作用导致肠道菌群多样性降低,厚壁菌门与拟杆菌门比值升高,有益菌减少,有害菌增加。代谢组学分析显示,甘油磷脂代谢显著变化,磷脂酰胆碱(PC)水平上升且溶血磷脂酰胆碱(LysoPC)水平下降。研究表明,PS和HFD联合作用可显著加剧NAFLD的进展,其作用机制可能涉及肠道菌群紊乱和甘油磷脂代谢的紊乱。本研究为理解PS在NAFLD中的作用提供了新的见解,提示环境污染和不健康饮食可能对人类健康产生潜在的协同影响。
  • 加载中
  • YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1):73-84.
    ARCIELLO M, GORI M, MAGGIO R, et al. Environmental pollution:a tangible risk for NAFLD pathogenesis[J]. International journal of molecular sciences, 2013, 14(11):22052-22066.
    TILG H, MOSCHEN A R. Evolution of inflammation in nonalcoholic fatty liver disease:the multiple parallel hits hypothesis[J]. Hepatology, 2010, 52(5):1836-1846.
    CHEN S N, CHE S Y, LI S Q, et al. The combined impact of decabromodiphenyl ether and high fat exposure on non-alcoholic fatty liver disease in vivo and in vitro[J]. Toxicology, 2021, 464:153015.
    SEN P, QADRI S, LUUKKONEN P K, et al. Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease[J]. Journal of hepatology, 2022, 76(2):283-293.
    ZHAO Y Y, YAN Y J, XIE L Q, et al. Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans:a combined fisher-based investigation and murine model study[J]. Environment international, 2020, 138:105648.
    ANDRADY A L. Microplastics in the marine environment[J]. Marine pollution bulletin, 2011, 62(8):1596-1605.
    HUANG D J, ZHANG Y, LONG J L, et al. Polystyrene microplastic exposure induces insulin resistance in mice via dysbacteriosis and pro-inflammation[J]. Science of the total environment, 2022, 838:155937.
    包亚博,王成尘,彭吾光,等.微塑料的人体富集及毒性机制研究进展[J].环境科学, 2024, 45(2):1173-1184.

    BAO Y B, WANG C C, PENG W G, et al. Human accumulation and toxic effects of microplastics:a critical review[J]. Environmental science, 2024, 45(2):1173-1184.

    LI Y, CHEN L P, ZHOU N L, et al. Microplastics in the human body:a comprehensive review of exposure, distribution, migration mechanisms, and toxicity[J]. Science of the total environment, 2024, 946:174215.
    WRIGHT S L, KELLY F J. Plastic and human health:a micro issue?[J]. Environmental science&technology, 2017, 51(12):6634-6647.
    HUANG Z Z, WENG Y, SHEN Q C, et al. Microplastic:a potential threat to human and animal health by interfering with the intestinal barrier function and changing the intestinal microenvironment[J]. Science of the total environment, 2021, 785:147365.
    WANG Q, CHEN C X, ZUO S, et al. Integrative analysis of the gut microbiota and faecal and serum short-chain fatty acids and tryptophan metabolites in patients with cirrhosis and hepatic encephalopathy[J]. Journal of translational medicine, 2023, 21(1):395.
    CHU C, ZHANG Y L, LIU Q P, et al. Identification of[WT《Times New Roman》]CeRNA[WT《Times New Roman》] network to explain the mechanism of cognitive dysfunctions induced by PS NPs in mice[J]. Ecotoxicology and environmental safety, 2022, 241:113785.
    LI X X, FENG L X, KUANG Q H, et al. Microplastics cause hepatotoxicity in diabetic mice by disrupting glucolipid metabolism via PP2A/AMPK/HNF4A and promoting fibrosis via the Wnt/β-catenin pathway[J]. Environmental toxicology, 2024, 39(2):1018-1030.
    XUE L F, DENG Z L, LUO W H, et al. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease:a randomized clinical trial[J]. Frontiers in cellular and infection microbiology, 2022, 12:759306.
    GENG J F, NI Q Q, SUN W, et al. The links between gut microbiota and obesity and obesity related diseases[J]. Biomedicine&pharmacotherapy, 2022, 147:112678.
    SHEN J, LI X, ZHANG X, et al. Effects of Xinjiang wild cherry plum (Prunus divaricata Ledeb) anthocyanin-rich extract on the plasma metabolome of atherosclerotic apoE-deficient mice fed a high-fat diet[J]. Frontiers in nutrition, 2022, 9:923699.
    GUO C X, HAN L, LI M P, et al. Seabuckthorn (Hippophaë rhamnoides freeze-dried powder protects against high-fat diet-induced obesity, lipid metabolism disorders by modulating the gut microbiota of mice[J]. Nutrients, 2020, 12(1):265.
    LIU Y, YANG K N, JIA Y Q, et al. Gut microbiome alterations in high-fat-diet-fed mice are associated with antibiotic tolerance[J]. Nature microbiology, 2021, 6(7):874-884.
    BISCHOFF S C, BARBARA G, BUURMAN W, et al. Intestinal permeability-A new target for disease prevention and therapy[J]. BMC gastroenterology, 2014, 14:189.
    PRATA J C. Airborne microplastics:consequences to human health?[J]. Environmental pollution, 2018, 234:115-126.
    DENG Y F, ZHANG Y, LEMOS B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific reports, 2017, 7:46687.
    ALBILLOS A, DE GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease:pathophysiological basis for therapy[J]. Journal of hepatology, 2020, 72(3):558-577.
    MESENS N, DESMIDT M, VERHEYEN G R, et al. Phospholipidosis in rats treated with amiodarone:serum biochemistry and whole genome micro-array analysis supporting the lipid traffic jam hypothesis and the subsequent rise of the biomarker BMP[J]. Toxicologic pathology, 2012, 40(3):491-503.
    UTZSCHNEIDER K M, KAHN S E, POLIDORI D C. Hepatic insulin extraction in NAFLD is related to insulin resistance rather than liver fat content[J]. The journal of clinical endocrinology and metabolism, 2019, 104(5):1855-1865.
    GAGGINI M, CARLI F, ROSSO C, et al. Altered metabolic profile and adipocyte insulin resistance mark severe liver fibrosis in patients with chronic liver disease[J]. International journal of molecular sciences, 2019, 20(24):6333.
    LI F, LI Q, ZHANG Y, et al. Effects of xylooligosaccharides on lipid metabolism, inflammation, and gut microbiota in C57BL/6J mice fed a high-fat diet[J]. Frontiers in pharmacology, 2021, 12:791614.
    PAIK D, YAO L N, ZHANG Y C, et al. Human gut bacteria produce TH17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903):907-912.
    QIU S T, CHEN J J, BAI Y, et al. GOS ameliorates nonalcoholic fatty liver disease induced by high fat and high sugar diet through lipid metabolism and intestinal microbes[J]. Nutrients, 2022, 14(13):2749.
    朱宏斌,沈伟,王竞,等.宏基因组研究高脂饮食诱导小鼠的肥胖易感性与肠道菌群的关系[J].第三军医大学学报, 2017, 39(8):773-780.

    ZHU H B, SHEN W, WANG J, et al. Correlation of gut microbiota with susceptibility to high-fat diet-induced obesity in mice:a metagenomic study[J]. Journal of third military medical university, 2017, 39(8):773-780.

    SUN H Q, CHEN N, YANG X N, et al. Effects induced by polyethylene microplastics oral exposure on colon mucin release, inflammation, gut microflora composition and metabolism in mice[J]. Ecotoxicology and environmental safety, 2021, 220:112340.
  • 加载中
计量
  • 文章访问数:  187
  • HTML全文浏览数:  187
  • PDF下载数:  55
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-09-13
赵雪, 徐旭龙, 王贝贝, 卢坤, 黄陶, 沈昕, 晏彪, 沈定文. 微塑料和高脂饮食暴露对小鼠非酒精性脂肪肝病的影响:肠道菌群与代谢组学研究[J]. 生态毒理学报, 2025, 20(1): 314-328. doi: 10.7524/AJE.1673-5897.20240913001
引用本文: 赵雪, 徐旭龙, 王贝贝, 卢坤, 黄陶, 沈昕, 晏彪, 沈定文. 微塑料和高脂饮食暴露对小鼠非酒精性脂肪肝病的影响:肠道菌群与代谢组学研究[J]. 生态毒理学报, 2025, 20(1): 314-328. doi: 10.7524/AJE.1673-5897.20240913001
ZHAO Xue, XU Xulong, WANG Beibei, LU Kun, HUANG Tao, SHEN Xin, YAN Biao, SHEN Dingwen. Impact of Microplastic and High-Fat Diet Exposure on Non-Alcoholic Fatty Liver Disease in Mice: A Study of Gut Microbiota and Metabolomics[J]. Asian journal of ecotoxicology, 2025, 20(1): 314-328. doi: 10.7524/AJE.1673-5897.20240913001
Citation: ZHAO Xue, XU Xulong, WANG Beibei, LU Kun, HUANG Tao, SHEN Xin, YAN Biao, SHEN Dingwen. Impact of Microplastic and High-Fat Diet Exposure on Non-Alcoholic Fatty Liver Disease in Mice: A Study of Gut Microbiota and Metabolomics[J]. Asian journal of ecotoxicology, 2025, 20(1): 314-328. doi: 10.7524/AJE.1673-5897.20240913001

微塑料和高脂饮食暴露对小鼠非酒精性脂肪肝病的影响:肠道菌群与代谢组学研究

    通讯作者: 沈昕,E-mail:shenxin1992@hbust.edu.cn; 
    作者简介: 赵雪(1999—),女,硕士研究生,研究方向为药理学与毒理学,E-mail:zx17782130875@126.com
  • 1. 湖北科技学院咸宁医学院药学院, 咸宁 437100;
  • 2. 湖北科技学院咸宁医学院口腔与眼视光医学院, 咸宁 437100;
  • 3. 湖北科技学院咸宁医学院基础医学院, 环境疾病与全健康重点实验室, 咸宁 437100
基金项目:

湖北省教育厅科学研究计划青年人才项目(Q20232804)

湖北科技学院校级项目(BK202319)

摘要: 非酒精性脂肪肝病(NAFLD)是全球最常见的慢性肝病之一,与环境因素相关。本研究探讨了聚苯乙烯微塑料(PS)与高脂饲料(HFD)联合作用对NAFLD进展的影响,旨在揭示PS在NAFLD发生中的作用,对理解NAFLD的环境诱因具有重要意义。48只雄性C57BL/6J小鼠随机分为4组:空白对照组、HFD组、PS暴露组、HFD+PS联合组,连续处理8周。通过监测小鼠体质量、血糖、口服糖耐量测试(OGTT)、胰岛素耐量测试(ITT),并检测血清生化指标,评估肝脏和肠道组织病理学变化;同时,采用16S rRNA高通量测序分析肠道微生物群结构变化,以及进行代谢组学分析。研究发现,HFD+PS组小鼠体质量增长最快,血糖波动显著,血脂异常加剧。病理学结果显示肠道黏膜损伤和肝脏脂质沉积增加。肠道微生物群结构分析表明,HFD和PS联合作用导致肠道菌群多样性降低,厚壁菌门与拟杆菌门比值升高,有益菌减少,有害菌增加。代谢组学分析显示,甘油磷脂代谢显著变化,磷脂酰胆碱(PC)水平上升且溶血磷脂酰胆碱(LysoPC)水平下降。研究表明,PS和HFD联合作用可显著加剧NAFLD的进展,其作用机制可能涉及肠道菌群紊乱和甘油磷脂代谢的紊乱。本研究为理解PS在NAFLD中的作用提供了新的见解,提示环境污染和不健康饮食可能对人类健康产生潜在的协同影响。

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回