-
据不完全统计,我国染料相关产业废水排放量约为6×109~8×109 t,占全国工业废水总排放量的30%~40%[1]。染料废水严重威胁到人体健康和其他生物生存。染料废水因具有化学成分复杂、难以自然降解、浓度高、废水量大及色度高等特点,成为国内外最难处理的工业废水之一。国内外常用物理法、化学法和生物法处理染料废水。但是,这些方法各自具有不同的优缺点。物理法适用于去除大颗粒物和浊度,但对于溶解性有机物和色度等问题无法有效解决;化学法可有效去除一些有机污染物,但需要使用昂贵的试剂并产生二次污染;生物法则受到生物耐受性和生长环境的限制。染料废水因其具有生物毒性,难以用常规的生物法进行处理[2]。
膜分离技术是21世纪应用最广泛的技术而膜材料是膜分离技术的核心,直接影响着分离过程中物质的传递效率和分离效果。聚酰胺复合膜(polyamide thin-film composite membrane, PATFC膜)是目前应用最广泛的无孔膜之一。PATFC选择透过性较好,且膜通量较高,比较容易调控,因而应用范围广[3]。在反渗透(RO)、纳滤 (NF)及正渗透(FO)等常见的膜分离技术领域的应用均占据主导地位。然而,由于PATFC膜耐氯性能差、易污染和Trade-off效应,在膜滤过程中易受到污染,且清洗效率低。为此,研究人员通过膜材料结构和性质的改变来提高其抗污染性能。
目前,PATFC膜的改性方法主要有:传统的前改性、后处理改性及新兴的中间层调控改性。前改性方法通过对PATFC膜亲水性改性,可以改善膜表面抗污染性能。YOU等[4]将制备好的乙二醇官能化的低聚半硅氧烷纳米颗粒(PEG-POSS)添加到水相溶液中,通过界面聚合反应合成改性PATFC膜,改性膜纯水通量是普通PATFC膜的2倍。然而,前处理改性可以显著提高其抗污染性能,但亲水性聚合物分子的引入,可能会破坏聚酰胺(PA)活性层的整体性,使改性膜的通量和截留性能受到影响。后处理改性主要包括表面接枝和表面涂覆,而且其操作简单,不会破坏膜的整体性,具备一定的实用价值,如刘彩虹[5]将纳米SiO2通过表面涂覆修饰到PATFC膜表面,得到具有亲水性的TMAC-SiNP-TFC和ARTMS-SiNP-TFC 2种新型复合膜,抗有机污染性能提升。虽然表面涂覆可将密度较高的改性涂层覆盖在PATFC膜表面,但由于连接涂层与PA活性层之间的官能团非相互作用较弱,涂层容易剥落;而表面接枝可克服这一缺陷,但随着接枝密度的增加,改性膜的渗透性会降低。中间层调控改性方法较难控制 PA 活性层的结构。近年来,研究人员在多孔支撑基底和PA活性层之间引入高分子、纳米材料等中间过渡层,调控PA活性层的微观结构,从而改善PATFC膜的分离性能[6]。如YU等[7]在膜上引入GO和CNT的联合过渡层,通过MWCNT调控GO层间距和结构,实现界面聚合反应有效调控。结果表明,与改性前的膜比较,改性后PA活性层厚度降低了60%。在3种改性方式中,通过前改性方法获得的改性膜,其抗污染性能显著。
但是,如何保持活性层的整体性,是该领域研究人员关注的重点方向。而传统的非金属光催化剂g-C3N4表面无孔隙结构、褶皱严重、结晶度低且缺陷较多。虽然g-C3N4能在可见光条件下激发,但能带宽度仍然较大,因而光生电子与光生空穴对具有较低的分离效率,导致其可见光催化活性不强。为提高非金属光催化剂g-C3N4的光催化活性及其在膜表面的附着强度、PATFC膜表面的抗污染性能与自清洁特性,本研究首先通过调控g-C3N4形貌,制备成二维超薄g-C3N4(UCN);然后通过超声及化学沉淀法将UCN与具有强导电性的GO及强光催化活性的AgI进行复合反应,构建异质结,得到具有较高光催化活性的AgI@GO@UCN(AGU)异质结光催化剂。随后,使用前改性方法将可见光响应AGU用于PATFC膜改性,获得具有光催化活性的AGU改性膜。通过对比PATFC膜及AGU改性膜的纯水通量、刚果红(CR)截留率和光照抗污染实验、可逆污染率与不可逆污染率、光催化自清洁实验及重复利用实验,评价了PATFC膜改性前后的选择透过性、抗污染性能、稳定性、通量恢复率以及自清洁特性。
一种新型可见光响应催化剂改性PATFC膜的制备及其抗污染性能
Preparation of a modified PATFC membrane coated with a novel visible light response catalyst and its anti-pollution properties
-
摘要: 以AgI、氧化石墨烯(GO)和超薄g-C3N4(UCN)为前驱体,通过超声结合化学沉淀法合成可见光响应AgI@GO@UCN(AGU)光催化剂,然后采用氮气压滤与界面聚合结合,将AGU负载于支撑基底聚酰胺膜(PATFC膜)表面,得到AGU改性PATFC膜,并对其制备条件及其抗污染性能进行研究。结果表明:改性膜最佳制备条件为:AGU投加量30 mg,间二胺(MPD)水相溶液质量分数1.0‰,MPD浸泡时间2 min,均苯三甲酰氯(TMC)有机相溶液质量分数0.25‰,TMC浸泡时间45 s;在最佳制备条件下,改性膜纯水通量为21.84 L·(m2·h)−1(抽吸压力0.2 MPa),对刚果红(CR)截留率可达97.80%;亲水性能显著改善,水接触角由57.1°(PATFC原膜)降至40.7°(AGU改性膜);可见光吸收性能提高显著,改性膜最大光吸收边带由原膜的387 nm红移至488 nm;改性膜抗污染性能很好,其比通量由PATFC膜的69.54%提升至92.75%;改性膜具有良好的光催化自清洁特性,光照60 min后膜通量恢复率可达95.83%;改性膜稳定性较高,重复利用6次后其通量恢复率仍可达92.35%,对CR截留率为97.29%。
-
关键词:
- AgI@GO@UCN可见光催化剂 /
- PATFC膜 /
- 抗污染性能 /
- 光催化自清洁特性
Abstract: In this study, AgI, graphene oxide (GO) and ultra-thin g-C3N4(UCN) were used as precursors, a type of visible light responsive AgI@GO@UCN(AGU) photocatalyst was synthesized through ultrasonic and chemical precipitation. Then, nitrogen press filtration combined with interfacial polymerization was used to load AGU on the surface of supporting polyamide membrane (PATFC), and AGU modified PATFC membrane was obtained. The preparation process conditions and anti-pollution properties of the modified membrane were studied. The results showed that the optimum preparation conditions were as follows: AGU dosage of 30 mg, MPD aqueous solution mass fraction of 1.0‰, MPD soaking time of 2 min, TMC organic phase solution mass fraction of 0.25‰, TMC soaking time of 45 s; Under the optimal preparation conditions, the pure water flux was 21.84 L·(m2·h)−1(suction pressure 0.2 MPa), and the retention rate of Congo red(CR) could reach 97.80%. The hydrophilicity was significantly improved, and the water contact angle decreased from 57.1°(PATFC) to 40.7°(AGU). The visible light absorption performance of the modified film increased significantly, and the red shift of its maximum absorption side band occurred from 387 nm to 488 nm. The modified membrane had a good anti-pollution performance, and its specific flux increased to 92.75% from 69.54% of PATFC membrane. The modified film had good photocatalytic self-cleaning properties, and the flux recovery rate could reach 95.83% after 60 min illumination. The modified film had a high stability, and its flux recovery rate could reach 92.35% and CR retention rate was still 97.29% after recycling for 6 times. -
表 1 正交实验结果
Table 1. Results of orthogonal test
因素 评价指标 M/
mgCMPD/
%TMPD/
minCTMC/
‰TTMC/
s纯水通量/
(L·(m2·h)−1)截留率/
%10 0.5 1 0.25 45 30.33 90.79 10 1.0 2 0.50 60 35.77 91.68 10 1.5 3 0.75 75 15.55 93.86 10 2.0 4 1.00 90 3.89 95.56 20 0.5 2 0.75 90 7.78 95.08 20 1.0 1 1.00 75 6.22 96.11 20 1.5 4 0.25 60 43.55 76.62 20 2.0 3 0.50 45 39.66 83.57 30 0.5 3 1.00 60 23.11 91.40 30 1.0 4 0.75 45 34.99 89.54 30 1.5 1 0.50 90 31.05 91.23 30 2.0 2 0.25 75 35.61 85.96 40 0.5 4 0.50 75 24.88 92.05 40 1.0 3 0.25 90 30.19 93.03 40 1.5 2 1.00 45 38.88 81.17 40 2.0 4 0.75 60 26.73 90.70 表 2 正交实验结果分析
Table 2. Analysis of orthogonal test results
项目 M(A)/
mgCMPD(B)/
%TMPD(C)/
minCTMC(D)/
‰TTMC(E)/
minK1(Jw) 21.385 21.525 23.582 34.920 35.965 K2(Jw) 24.302 26.793 29.510 32.840 32.290 K3(Jw) 31.190 32.258 27.127 21.263 20.565 K4(Jw) 30.170 26.473 26.828 18.025 18.227 R(Jw) 9.805 10.733 5.928 16.895 17.738 K1(η) 92.973 92.330 92.207 86.600 86.268 K2(η) 87.845 92.590 88.472 89.633 87.600 K3(η) 89.532 85.720 90.465 92.285 91.995 K4(η) 89.237 88.947 88.443 91.060 93.725 R(η) 5.128 6.870 3.764 5.695 7.457 表 3 PATFC膜和AGU改性膜的机械强度对比
Table 3. Comparison of tensile strength between PATFC membrane and AGU modified membrane
样品 样品尺寸
(长×宽×厚)/mm横截面积/
mm2最大负荷/
N抗拉强度/
MPa断裂伸长率/
%PATFC膜 90×15×0.225 3.375 76.55 22.68 12.78 AGU改性膜 90×15×0.238 3.570 73.78 20.67 15.09 -
[1] 周鑫, 唐勇. 2018~2022年中国染料行业发展趋势[J]. 染料与染色, 2018, 55(1): 11-23. [2] 谢艳新, 刘海娟, 尚磊, 等. 染料废水处理最新研究进展[J]. 印染助剂, 2020, 37(7): 11-16. doi: 10.3969/j.issn.1004-0439.2020.07.003 [3] 朱晓, 朱军勇, 张亚涛. 金属有机骨架/聚酰胺薄层纳米复合膜的研究进展[J]. 化工进展, 2022, 41(8): 4314-4326. [4] YOU X, MA T, SU Y, et al. Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles[J]. Journal of Membrane Science, 2017, 540: 454-463. doi: 10.1016/j.memsci.2017.06.084 [5] 刘彩虹. 聚酰胺复合膜功能层抗污染调控机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [6] YANG Z, SUN P, LI X, et al. A critical review on thin membrane nanocomposite membranes with interlayered structure: Mechanisms, recent developments, and environmental applications[J]. Environmental Science & Technology, 2020, 54: 15563-15583. [7] YU F, SHI H, SHI J, et al. High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer[J]. Journal of Membrane Science, 2020, 616: 118611. doi: 10.1016/j.memsci.2020.118611 [8] 邹正光, 俞惠江, 龙飞, 等. 超声辅助 Hummers 法制备氧化石墨烯[J]. 无机化学学报, 2011, 27(9): 1753-1757. [9] MA S, ZHAN S, JIA Y, et al. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light[J]. Applied Catalysis B:Environmental, 2016, 186: 77-87. doi: 10.1016/j.apcatb.2015.12.051 [10] 李馗. 类石墨相氮化碳共轭结构的调控及其光催化制氢性能的研究[D]. 广州: 华南理工大学, 2018. [11] 宋明顺, 黄佳, 张士朋, 等. 多指标正交试验设计去量纲准则及方法研究[J]. 工业工程与管, 2014, 19(1): 41-46. [12] 黄婕颖, 刘建军, 左胜利, 等. Ag3PO4量子点/石墨相氮化碳纳米片复合光催化剂的制备及其对苯甲醇选择性氧化活性[J]. 应用化学, 2020, 37(9): 1030-1037. doi: 10.11944/j.issn.1000-0518.2020.09.200047 [13] 张绍虎. 不同功能纳米材料共混改性聚醚砜膜及其超滤性能研究[D]. 兰州: 兰州理工大学, 2020. [14] ZHANG Z, QIN Y, KANG G, et al. Tailoring the internal void structure of polyamide films to achieve highly permeable reverse osmosis membranes for water desalination[J]. Journal of Membrane Science, 2020, 595: 117518. doi: 10.1016/j.memsci.2019.117518 [15] 付一菲. 基于ZIF-8的聚酰胺反渗透复合膜的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [16] JAYALAKSHMI A, RAJESH S, KIM I C, et al. Poly(isophthalamide) based graft copolymer for the modification of cellulose acetate ultrafiltration membranes and a fouling study by AFM imaging[J]. Journal of Membrane Science, 2014, 465: 117-128. doi: 10.1016/j.memsci.2014.04.020 [17] ZHANG W, GUO J, REN Y. Synthesis, characterization, and properties of UV-absorbing polyimides based on alicyclic diamine with various linking positions[J]. Journal of Polymer Research, 2019, 26(6): 1-8. [18] 李晓峰. 聚吡咯中空微球改性聚哌嗪酰胺复合纳滤膜的制备及性能研究[D]. 天津: 天津工业大学, 2019. [19] YIN J, ZHU G, DENG B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification[J]. Desalination, 2016, 379: 93-101. doi: 10.1016/j.desal.2015.11.001 [20] OROOJI Y, FAGHIH M, RAZMJOU A, et al. Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion[J]. Carbon, 2017, 111: 689-704. doi: 10.1016/j.carbon.2016.10.055 [21] WANG C, ZHANG L, ZHANG Y, et al. Influence of surface roughness on the mechanical behavior of modified polypropylene films[J]. Polymer Engineering & Science, 2019, 59(9): 1844-1851. [22] SUN F , ZENG H , TAO S , et al. Nanofiltration membrane fabrication by the introduction of polyhedral oligomeric silsesquioxane nanoparticles: Feasibility evaluation and the mechanisms for breaking "trade-off" effect[J]. Desalination, 2022, 527: 115515. [23] CHEN S, LI L, ZHAO C, et al. Surface hydration: Principles and applications tow ard low-fouling/nonfouling biomaterials-ScienceDirect[J]. Polymer, 2010, 51(23): 5 283-5293.