-
双氯芬酸钠(diclofenac sodium,DCF)是非甾体抗炎药,其在人体内不能完全代谢,常随排泄物一同进入下水管道,由于具有极性强、难降解的特点,导致其在污水处理厂、土壤、地表水、地下水甚至饮用水中频频检出[1-5]。已有相关研究表明DCF对自然界中的动植物的生存与繁殖产生了一定的不良影响,是一种新型酸性阴离子污染物。JOACHIM等[6]发现,在半自然条件下,暴露在含DCF水体中的植物生物量和鱼类存活量产生显著下降。因此,水中DCF的去除已成为亟待处理的环境问题之一。
目前,膜过滤、高级氧化、生物降解[7]等技术均可以有效去除水中的DCF,但这类方法大多成本高,而且高级氧化法会产生有毒副产物,生物降解耗时较长。吸附法作为一种操作简单、低成本、环境友好型的方法备受重视。吸附剂的经济环保高效性能是影响吸附法广泛应用的关键因素,以生物炭为代表的低价环保高效吸附剂的制备成为吸附法的研究热点。我国是一个农业大国,稻壳作为一种廉价农业废弃物是制备生物炭的优质原料,但原始生物炭往往不能满足对目标污染物的高效去除,常常需要对其改性以提高吸附能力[8]。近年来金属改性生物炭去除水中有机污染物成为研究热点,原始稻壳炭表面带负电,由于静电斥力作用,对作为阴离子的DCF并不能有效吸附,经过Fe、Cu等金属元素改性后,生物炭表面负电荷降低,从而通过配体交换引起表面络合促进对阴离子污染物的吸附性能。另外,改性炭与有机污染物之间的n-π、π-π、氢键、疏水等相互作用也在吸附中起到了重要作用[9-11]。有研究表明,经铜改性后的花椰菜根生物炭显示出比为改性生物炭更高的比表面积,对DCF的去除率可达88.96%[12];铁锰改性炭对DCF的吸附率是商业活性炭的2倍多且具有较优的pH抗干扰能力[13]。此外,一些研究[14]表明,铁氧化物和铜氧化物的水解产物具有与—OH、C=O、—COOH螯合、络合的能力,这对含有羧基的DCF的吸附是有利的。同时,有研究表明,铜的存在可以促进电子转移,通过产生的高还原性氢自由基去除水中的有机物[15-16]。JUAN等[17]在研究Fe/Cu改性城市活性污泥基复合材料对四环素的吸附时发现铜优异的络合能力可以显著影响去除率,在最佳条件下对四环素的最大吸附量可达386.93 mg·g−1,吸附机制主要包括物理吸附、络合作用、氢键、π-π相互作用等。目前使用铁铜改性炭去除水中DCF的研究鲜见报道。因此,本研究采用铜和铁制备改性稻壳炭以研究对水中DCF的去除效果与机理。在吸附剂实际应用中,还需要考虑水质对吸附性能的影响。DCF为酸性阴离子污染物,污水的pH、共存阴离子及有机物均可能对生物炭对DCF的吸附性能造成影响。
本研究以稻壳为原料,通过Fe/Cu盐对其进行改性得到铁铜改性的生物炭,以DCF为目标污染物,考察溶液pH、吸附剂投加量、干扰阴离子及有机物HA对吸附过程的影响,利用吸附动力学模型和吸附等温线模型对实验数据进行拟合,探讨吸附机制,在促进农业废物资源化利用的同时为新型污染物DCF的去除提供基础依据。
铁铜改性稻壳炭对双氯芬酸钠吸附性能
Performance of Fe/Cu modified rice husk biochar on diclofenac sodium adsorption
-
摘要: 以稻壳为原料制备铁铜改性生物炭(FCBC300),采用扫描电子显微镜、元素组成分析仪、X-射线衍射光谱仪、傅里叶红外光谱仪对其进行了系列基础理化性质表征,通过批量吸附实验研究了FCBC300在不同pH和干扰离子及有机物腐殖酸(HA)等条件下对双氯芬酸钠(DCF)的去除效果和吸附机制。结果表明,改性后稻壳炭表面负载Fe3O4、γ-Fe2O3和CuO,芳香性增强、亲水性降低,对DCF的吸附性能大幅度提升。pH=5~9条件下,改性稻壳炭对DCF的吸附量约是未改性稻壳炭的20倍,吸附机制以静电作用为主;PO43−的存在对吸附几乎无影响,SO42−、Cl−和HCO3−对DCF的去除虽有轻微抑制作用,但去除率下降幅度均低于5%,HA存在则明显抑制吸附能力;FCBC300对DCF的吸附过程,更符合准一级动力学模型和Langmuir等温吸附模型,预测最大吸附量为476.190 5 mg·g−1。综上所述,FCBC300体现出良好的pH缓冲性、抗离子干扰性和高吸附性能,在废水处理中有较好的应用前景。Abstract: Rice husk was used to prepare iron-copper modified biochar (FCBC300), and its physicochemical properties were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, elemental composition analysis, and scanning electron microscopy. The effect and mechanism of diclofenac sodium (DCF) removal by FCBC300 were investigated through adsorption batch tests at different pH, interfering ions and organic humic acid (HA). The results showed that Fe3O4, γ-Fe2O3, and CuO loading onto the surface of FCBC300 could increase its aromaticity and decrease its hydrophilicity, as well as largely increase the adsorption performance on DCF. The adsorption capacity of DCF on FCBC was about 20 times that of the unmodified rice husk charcoal at pHs of 5~9. Electrostatic interactions dominated the adsorption mechanism. The coexisting PO43− had hardly effect on DCF removal, while coexisting SO42−, Cl−, and HCO3− slightly inhibited DCF removal with less than 5% reduction rate. HA had an obviously inhibitory effect on DCF adsorption on FCBC300. The fitting results with adsorption kinetic and isothermal modes revealed that the DCF adsorption process on FCBC300 was more consistent with the quasi-first-order kinetic model and the Langmuir model. The maximum adsorption capacity was estimated to be 476.190 5 mg·g−1. FCBC300 is a promising material for wastewater treatment because of its strong adsorption capabilities, anti-ion interference, and pH buffering capabilities.
-
Key words:
- rice husk biochar /
- modification /
- diclofenac sodium /
- adsorption
-
表 1 BC300和FCBC300的比表面积、介孔孔径及孔容
Table 1. Specific surface area, mesopore size and volume of BC300 and FCBC300
生物炭 比表面积/
(m2·g−1)平均孔径/
nm总孔容/
(cm3·g−1)BC300 2.717 6.315 0.004 FCBC300 6.139 6.110 0.008 表 2 BC300和FCBC300的元素组成
Table 2. Elements content analysis of BC300 and FCBC300
吸附剂 元素组成 H/C O/C (O+N)/C C/% H/% O/% N/% Fe/% Cu/% BC300 48.48 3.71 21.29 0.55 1.50×10−2 2.00×10−4 0.92 5.27 0.34 FCBC300 56.18 3.75 18.45 0.37 3.91 0.95 0.80 3.94 0.25 注:C、H、O、N为质量百分比,H/C、O/C、(O+N)/C为摩尔比。 表 3 FCBC300的吸附动力学拟合参数
Table 3. Adsorption kinetics fitting parameters of FCBC300
生物炭
类型准一级动力学方程 准二级动力学方程 Qe/(mg·g−1) K1/min−1 R2 Qe/(mg·g−1) K2/(g·mg−1·min−1) R2 FCBC300 8.744 1 8.96×10−3 0.972 4 9.626 7 1.15×10−3 0.951 6 表 4 FCBC300的吸附等温线拟合参数
Table 4. Adsorption isotherm parameter of FCBC300
生物炭
类型Langmuir方程 Freundlich方程 Qm/(mg·g−1) Kl/(L·mg−1) R2 n Kf/(mg(1-1/n)·L1/n·g−1) R2 FCBC300 476.190 5 0.087 9 0.978 3 1.301 7 42.222 8 0.962 5 -
[1] 王龙, 朱丹, 曹云霄, 等. 北京市污水处理厂出水中药物和个人护理品的季节变化及其生态风险评价[J]. 环境科学学报, 2021, 41(7): 2922-2932. [2] MIRIAM B, CARMEN C, PABLO A L. Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater[J]. Environmental Pollution, 2018, 235: 312-321. doi: 10.1016/j.envpol.2017.12.085 [3] 王丽, 陈凡, 易皓, 等. 东江下游药物和个人护理品污染特征及风险评价[J]. 河南师范大学学报(自然科学版), 2014, 42(6): 79-85. [4] LI Z P, YU X P, YU F R, et al. Occurrence, sources and fate of pharmaceuticals and personal care products and artificial sweeteners in groundwater[J]. Environmental science and pollution research international, 2021, 28(17): 20903-20920. doi: 10.1007/s11356-021-12721-3 [5] CARMONA E, ANDREU V, PICÓ Y. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water[J]. Science of the Total Environment, 2014, 484: 53-63. doi: 10.1016/j.scitotenv.2014.02.085 [6] JOACHIM S, BEAUDOUIN R, DANIELE G, et al. Effects of diclofenac on sentinel species and aquatic communities in semi-natural conditions[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111812. doi: 10.1016/j.ecoenv.2020.111812 [7] TAOUFIK N, BOUMYA W, JANANI F, et al. Removal of emerging pharmaceutical pollutants: A systematic mapping study review[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104251. doi: 10.1016/j.jece.2020.104251 [8] 郑姗, 郑刘根, 张燕海, 等. 改性芦苇生物炭对水中硫酸盐的吸附性能及机理[J]. 环境工程学报, 2022, 16(12): 3916-3925. [9] LONAPPAN L, ROUISSI T, BRAR K S, et al. An insight into the adsorption of diclofenac on different biochars: Mechanisms, surface chemistry, and thermodynamics[J]. Bioresource Technology, 2018, 249: 386-394. doi: 10.1016/j.biortech.2017.10.039 [10] LIU S, XU W, LIU Y, et al. Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water[J]. Science of the Total Environment, 2017, 592. [11] LIU SB, LI MF, LIU G, et al. Removal of 17 β-estradiol from aqueous solution bygraphene oxide supported activated magnetic biochar: adsorptionbehavior and mechanism[J]. Taiwan Institute Chemical Engineers, 2019, 102: 330-339. doi: 10.1016/j.jtice.2019.05.002 [12] LIANG G W, HU Z Z, WANG Z W, et al. Effective removal of carbamazepine and diclofenac by CuO/Cu2O/Cu-biochar composite with different adsorption mechanisms[J]. Environmental science and pollution research international, 2020, 27(36): 45435-45446. doi: 10.1007/s11356-020-10284-3 [13] ZHANG B, MEI M, LI K W, et al. One-pot synthesis of MnFe2O4 functionalized magnetic biochar by the sol-gel pyrolysis method for diclofenac sodium removal[J]. Journal of Cleaner Production, 2022, 381(P1). [14] YANG X, XU G, YU H, et al. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal[J]. Bioresource Technology, 2016, 211: 566-573. doi: 10.1016/j.biortech.2016.03.140 [15] WU Y, YUE Q, GAO Y, et al. Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline[J]. Journal of Environmental Sciences, 2018, 69(7): 173-182. [16] DUAN J, ZHU H, XU F, et al. A new approach to 4-chlorophenol dechlorination on monometallic copper compared to its Cu/Fe bimetallic system[J]. Chemical Engineering Journal, 2016, 304: 282-288. doi: 10.1016/j.cej.2016.06.089 [17] MA J, ZHOU B, ZHANG H, et al. Activated municipal wasted sludge biochar supported by nanoscale Fe/Cu composites for tetracycline removal from water[J]. Chemical Engineering Research and Design, 2019, 149: 209-219. doi: 10.1016/j.cherd.2019.07.013 [18] 丰祎. 生物质稻壳制备硅基(SiO2、SiOx和Si)/碳复合材料及其储锂性能的研究[D]. 长春: 吉林大学, 2021, 209-219. [19] 张彦彬, 杨会国, 马丽萍, 等. 生物质热解制备多孔吸附材料的研究进展[J]. 应用化工, 2023, 52(11): 3101-3106. [20] SEPÚLVEDA P, RUBIO A M, BALTAZAR E S, et al. As(V) removal capacity of FeCu bimetallic nanoparticles in aqueous solutions: The influence of Cu content and morphologic changes in bimetallic nanoparticles[J]. Journal of Colloid And Interface Science, 2018, 524: 177-187. doi: 10.1016/j.jcis.2018.03.113 [21] ELYOUNSSI K, HALIM M. An investigation on the texture and microstructure of carbonized charcoals produced by two-step pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 258-265. doi: 10.1016/j.jaap.2014.06.003 [22] 谷娟. 餐厨垃圾水热炭的制备及对六价铬和布洛芬的吸附研究[D]. 重庆: 重庆大学, 2022. [23] NAVARRO C, MILENA Y , PIRAJÁN M, et al. Processing of fique bagasse waste into modified biochars for adsorption of caffeine and sodium diclofenac[J]. Brazilian Journal of Chemical Engineering, 2021, 39(4): 1-16. [24] HOU W H, WANG S, LI Y, et al. Influence of modified biochar supported Fe–Cu/polyvinylpyrrolidone on nitrate removal and high selectivity towards nitrogen in constructed wetlands[J]. Environmental Pollution, 2021, 289: 117812-117812. doi: 10.1016/j.envpol.2021.117812 [25] 朱建龙, 郭硕铖, 徐伟杰, 等. 纳米铁改性生物炭制备及其对含铬废水的吸附性能[J]. 环境工程学报, 2023, 17(9): 2891-2898. [26] 吴嘉煦, 李凯, 孙鑫, 等. 载镧酒糟污泥生物炭对磷的吸附性能及机理[J]. 环境工程学报, 2022, 16(12): 3884-3894. [27] 梁金浩, 许兵, 张钰卿, 等. 金属盐改性活性氧化镁对饮用水中氟离子的去除性能[J]. 环境工程学报, 2023, 17(7): 2181-2191. [28] MENG F Y, SOMG M, CHEN Y Y, et al. Promoting adsorption of organic pollutants via tailoring surface physicochemical properties of biomass-derived carbon-attapulgite[J]. Environmental Science and Pollution Research, 2020, 28(9): 11106-11118. [29] 吕松磊. 稻壳基活性炭的制备、改性以及对苯酚的吸附机理研究[D]. 北京: 北京化工大学, 2020. [30] 陈涛. 稻壳基磁性活性炭的制备及其在水处理中的应用研究[D]. 南京: 东南大学, 2018. [31] 王江南, 孙晓雪, 杨玲辉等. 壳聚糖、铁锰改性稻壳生物炭的表征及其Cd2+吸附性能研究[J]. 农业环境科学学报, 2023, 42(9): 1964-1973. [32] WEI X Q, WANG X, GAO B, et al. Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120[J]. ACS omega, 2020, 5(11): 5748-5755. doi: 10.1021/acsomega.9b03787 [33] 刘佳乐. 生物炭负载铁铜双金属复合物活化氧气吸附和降解四环素[D]. 长沙: 湖南大学, 2022. [34] ANDRESSA C F, EDSON L F, GUILHERME L D. Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions[J]. Journal of Cleaner Production, 2019, 229: 828-837. doi: 10.1016/j.jclepro.2019.05.037 [35] 任洁青, 王朝旭, 张峰, 等. 改性稻壳生物炭对水中Cd2+的吸附性能研究[J]. 生态与农村环境学报, 2021, 37(1): 73-79. [36] 董智伟, 左宁, 王彦, 等. 热解污泥生物炭化学组成及环境效应研究进展[J]. 环境污染与防治, 2019, 41(4): 479-484. [37] LEENA A P, KURIAN J. Hydrothermal carbonization of oily sludge for solid fuel recovery investigation of chemical characteristics and combustion behaviour[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105235. doi: 10.1016/j.jaap.2021.105235 [38] SURIYANON N, PUNYAPALAKUL P, NGAMCHARUSSRIVICHAI C. Mechanistic study of diclofenac and carbamazepine adsorption on functionalized silica-based porous materials[J]. Chemical Engineering Journal, 2013, 214: 208-218. doi: 10.1016/j.cej.2012.10.052 [39] LUO H, ZHANG Y, XIE Y, et al. Iron-rich microorganism-enabled synthesis of magnetic biocarbon for efficient adsorption of diclofenac from aqueous solution[J]. Bioresource Technology, 2019, 282: 310-317. doi: 10.1016/j.biortech.2019.03.028 [40] BHADRA N B, SEO W P, JHUNG H S. Adsorption of diclofenac sodium from water using oxidized activated carbon[J]. Chemical Engineering Journal, 2016, 301: 27-34. doi: 10.1016/j.cej.2016.04.143 [41] FENG Z, ODELIUS K, RAJARAO K G, et al. Microwave carbonized cellulose for trace pharmaceutical adsorption[J]. Chemical Engineering Journal, 2018, 346: 557-566. doi: 10.1016/j.cej.2018.04.014 [42] DAI C, GEISSEN S, ZHANG Y, et al. Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres[J]. Environmental Pollution, 2011, 159(6): 1660-1666. doi: 10.1016/j.envpol.2011.02.041 [43] ZHAO Y, LIU F, QIN X. Adsorption of diclofenac onto goethite: Adsorption kinetics and effects of pH[J]. Chemosphere, 2017, 180: 373-378. doi: 10.1016/j.chemosphere.2017.04.007 [44] 李乃玮, 陈月琴, 罗维, 等. 壳聚糖/生物炭复合材料对Cr离子的吸附性能[J]. 应用化工, 2022, 51(2): 406-410+425. doi: 10.3969/j.issn.1671-3206.2022.02.021 [45] LONAPPAN L, ROUISSI T, BRAR K S, et al. Adsorption of diclofenac onto different biochar microparticles: Dataset–Characterization and dosage of biochar[J]. Data in Brief, 2018, 16: 460-465. doi: 10.1016/j.dib.2017.10.041 [46] SAJAB S M, CHIA H C, ZAKARIA S, et al. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution[J]. Bioresource Technology, 2011, 102(15): 7237-7243. doi: 10.1016/j.biortech.2011.05.011 [47] ZAHRA S, HOCHEOL S, AMIT B. Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar[J]. Science of the Total Environment, 2020, 745: 140789. doi: 10.1016/j.scitotenv.2020.140789 [48] 才金玲, 谢玉洁, 刘兰军, 等. 腐殖酸的性质及应用进展[J/OL][J]. 应用化工, 2023, 52(12): 3418-3422+3427. [49] 谢青青, 马晓燕, 艾迪娅·阿不来提, 等. 腐殖酸对二甲基胂酸在磁铁矿上吸附过程的影响[J]. 环境化学, 2023, 42(2): 658-670. [50] 高琦, 黄海龙, 韩卢, 等. PEI改性磁性壳聚糖微球的制备及其对布洛芬的吸附性能[J]. 功能高分子学报, 2020, 33(2): 165-171. [51] GAO T, SHI WS, ZHAO MX, et al. Preparation of spiramycin fermentation residue derived biochar for effective adsorption of spiramycin from wastewater[J]. Chemosphere, 2022, 296: 133902-133902. doi: 10.1016/j.chemosphere.2022.133902 [52] TAM M T N, LIU Y, BASHIR H, et al. Efficient removal of diclofenac from aqueous solution by potassium ferrate-activated porous graphitic biochar: ambient condition influences and adsorption mechanism[J]. International Journal of Environmental Research and Public Health, 2019, 17(1): 291-291. doi: 10.3390/ijerph17010291