-
重金属污染场地主要是由采矿、冶炼、电镀、化工、电子和制革染料等工业生产的“三废”等引起的. 随着我国工业化的快速发展,重金属污染场地环境安全问题形势严峻[1],土壤重金属污染具有隐蔽性好、潜伏周期长、毒性危害大和地域差异明显等特点[2 − 3]. 重金属在土壤环境中的累积和迁移会威胁到人类食品和饮用水安全、区域生态环境、人居环境健康和经济社会的可持续发展[4].
2014年4月发布的《全国土壤污染状况调查公报》[5]调查结果显示,耕地土壤环境质量堪忧,工矿业废弃地土壤环境问题突出. 从土地利用类型看,耕地、林地、草地土壤点位超标率分别为19.40%、10.00%、10.40%,同时指出工矿业、农业生产等人类活动和自然背景值高是造成土壤污染或超标的主要原因. 2022年《中国生态环境公报》[6]指出全国土壤环境污染加重的趋势得到了初步遏制. 目前影响农用地土壤环境质量的主要污染物是重金属,其中Cd为首要污染物,同时指出全国重点行业企业用地土壤污染的风险仍需进一步重视. 根据河南省生态环境厅发布《河南省2019年度土壤污染重点监管单位名录》[7],重金属污染企业占据名录中大部分企业,尤其以化工、冶炼、采矿等企业最为突出. 从地域上看,洛阳、济源和焦作所涉及的重金属污染企业众多,尤其以洛阳市栾川县和孟津县最为突出. 研究区域位于河南省洛阳市栾川县,主要以高山地形为主,该县拥有亚洲最大的钼矿开采企业(洛阳钼业),周边多有钼矿、铁矿、金矿等开采或冶炼厂. 该地区土壤污染特征主要以镉、铅、铜、锌、砷污染为主.
《河南省重金属污染防治工作指导意见》[8]明确提出“有序开展重金属污染地块治理与修复工作”的任务. 明确指出铅Pb、镉Cd、砷As、铜Cu、锌Zn等为重点污染物. 铅Pb、铜Cu、锌Zn等有色金属矿采选及冶炼为重金属污染防控重点行业,这些行业在研究区域内均有分布. 在开展土壤重金属污染治理之前对目标污染场地的重金属污染程度、累积效应、赋存形态、来源解析、迁移转化和生态风险评估工作十分关键,这对土壤污染修复技术的选择具有十分重要的指导意义. 如贾晗等[9]采用单因子污染指数法、内梅罗综合污染指数法、地累积指数法等调查研究了安徽典型硫铁矿集中开采区土壤重金属污染特征和来源,发现研究区土壤中重金属元素主要来源为采矿活动综合源、大气沉降与农业综合源等. 余高等[10]通过单因子污染指数法、地积累指数法、潜在生态风险指数法和人体健康风险评价模型评价土壤Cu、Zn、Pb、Cr、Ni、Mn、As和Hg的生态环境风险,得到了研究区整体存在强潜在生态风险等结论. 王海洋等[11]利用内梅罗综合污染指数和潜在生态风险指数对矿区周边农田土壤重金属分布特征及污染水平开展评价. 万梦雪等[12]采用单因子指数法、内梅罗综合污染指数法和地累积指数评价了上海市闵行区典型工业区的土壤污染状况,同时基于主成分分析-多元线性回归模型解析重金属的来源. 此外,Miao等[13]和Luo等[14]研究了由土壤重金属污染引起的健康风险,并开展量化分析评估.
可见,众多学者会采用多种指数评价方法对土壤重金属污染状况、生态风险和健康风险等进行评价,进一步借助主成分分析[15 − 18]、多元线性回归模型[9,12]、聚类分析[19 − 20]、正定矩阵因子分析模型[15](PMF)等方法模型识别污染源并进行定量解析,从而得到一个更具有参考性的结果. 然而,重金属的富集程度和生态风险也会受到重金属形态和土壤类型的影响. Tessier[21]提出的五步连续提取法将重金属的形态分为可交换态(F1)、碳酸盐结合态(F2)、铁锰氧化物结合态(F3)、有机结合态(F4)和残渣态(F5),不同形态重金属含量对迁移转化能力、生物可利用度和生态风险等有更深入的指示作用,这对于土壤修复技术的选择也很有意义. 洛阳栾川县区内矿产资源丰富,是我国著名的多金属矿集区,关于这一地区的重金属污染特征和生态风险的调查研究还比较匮乏. 此外,目前还缺乏关于矿区周边林地、农田和尾矿周边土壤类型对重金属富集和生态风险的影响研究. 更重要的是,几乎未见以重金属形态分析为部分依据开展源解析工作的研究报道.
基于此,本文以洛阳栾川县矿区周边为目标研究区域,采样点位主要布置在栾川县矿区周边,采用单因子指数法、内梅罗综合污染指数法、地累积指数法来探究洛阳市栾川矿区周边7种重金属(As、Pb、Cu、Zn、Cr、Cd 和 Ni)污染特征,借助单因子和综合潜在生态风险指数分析重金属的潜在生态风险. 进一步探究土地利用类型和重金属形态对重金属富集和迁移转化生态风险的影响. 此外,采用Pearson相关性分析和主成分分析方法开展来源解析. 旨在为探索目标地区较适宜的土壤修复技术提供参考依据和理论指导.
洛阳市栾川县矿区周边土壤重金属污染特征、来源与生态风险评价
Evaluation of heavy metal pollution characteristics, sources and ecological risks of soil around mining areas in Luanchuan County, Luoyang City
-
摘要: 为探究洛阳栾川县矿区周边土壤重金属污染特征与生态风险,采集并测定了研究区47个表层土壤(0—20 cm)样品 Zn、Cu、Cd、Pb、Cr、Ni和 As 重金属元素含量,运用单因子指数(Pi)、内梅罗综合指数法(Pm)、地累积指数(Igeo)、潜在生态风险指数(Eri和RI)、Tessier重金属五步提取法、主成分分析(PCA)等方法围绕重金属元素分布特征、污染程度、潜在生态风险、重金属形态和来源进行分析和讨论. 结果表明,Cd和As的污染程度和生态风险最高(Eri>160),空间分布不均匀(CV>90.00%),为引起土壤环境风险的主要因子;其次是Pb、Cu、Zn;最低的是Cr和Ni,且其空间异质性较弱,迁移转化风险较低. 不同的重金属在林地土壤、农田土壤和尾矿周边土壤中的富集程度和生态风险存在差异. 结合Eri和RI值来看,林地土壤As和Cd潜在生态风险较高,Eri分别达到了643.35和536.10. 从重金属形态分布来看,Cd和Pb有效态含量占比较高,分别为72.13%、86.84%;其次是Cu、Zn和As;林地土壤中Pb的碳酸盐结合态(43.82%)以及Cd可交换态(28.24%)和有机结合态(33.31%)明显高于农田和尾矿,发生迁移转化生态风险较高. 主成分分析结果表明主成分PC1、PC2和PC3分别归因于矿业开采排放源、自然源、和混合源(自然淋溶、林业和农业活动、采矿).Abstract: To investigate the characteristics and ecological risks of heavy metal pollution in soils around mining areas in Luanchuan County, Luoyang City, 47 surface soil (0—20 cm) samples in the study area were collected and measured for Zn, Cu, Cd, Pb, Cr, Ni and As, and single factor index (Pi), Nemero integrated index (Pm), ground accumulation index (Igeo), potential ecological risk index ( Eri and RI), Tessier's five-step extraction, and principal component analysis (PCA) were used to portray and delineate the distribution characteristics, pollution level, potential ecological risk, heavy metal fractionations and source apportionment. The results showed that Cd and As had the highest pollution degree and ecological risk (Eri>160), with heterogeneous spatial distribution (CV>90.00%), and were the main factors causing soil environmental risk; followed by Pb, Cu, and Zn; the lowest were Cr and Ni, and their spatial heterogeneity was weak and the migration transformation risk was low. The degree of enrichment and ecological risk of the different heavy metals in woodland soils, agricultural soils and soils around tailings differed. Based on the calculation results of the Eri and RI, the potential ecological risk of forest soil As and Cd was high, while the Eri were 643.35 and 536.10, respectively. The heavy metal fractionation analysis showed that Cd and Pb have a higher content in the effective state, 72.13% and 86.84%, respectively; followed by Cu, Zn and As; the carbonate bound state (43.82%) as well as the Cd exchangeable state (28.24%) and organic bound state (33.31%) of Pb in woodlands are significantly higher than the states in agricultural fields and tailing, with a higher ecological risk of migration transformation. The PCA results indicated that PC1, PC2 and PC3 were recognized as mining emission sources, natural sources, and mixed sources (natural leaching, forestry and agricultural activities, and mining), respectively.
-
表 1 土壤重金属污染指数分级标准
Table 1. Classification of heavy metal indexes
单因子污染指数Pi
Single factor pollution index内梅罗综合污染指数Pimax
Néméro composite pollution index地累积指数Igeo
Ground accumulation index范围 污染水平 范围 污染水平 范围 污染水平 Pi≤1 清洁 Pm≤0.7 清洁 Igeo≤0 无污染 1<Pi≤2 轻微污染 0.7<Pm≤1 尚清洁 0<Igeo≤1 轻-中度污染 2<Pi≤3 轻度污染 1<Pm≤2 轻度污染 1<Igeo≤2 中度污染 3<Pi≤5 中度污染 2<Pm≤3 中度污染 2<Igeo≤3 中-强度污染 Pi>5 重度污染 Pm>3 重度污染 3<Igeo≤4 强度污染 4<Igeo≤5 强-极强污染 Igeo>5 极强度污染 表 2 土壤重金属潜在生态风险指数分级标准
Table 2. Grading criteria for the potential ecological risk index for heavy metals in soils
单因子潜在生态风险指数
Single factor potential ecological risk index综合潜在生态风险指数
Comprehensive potential ecological risk index生态危害程度
Degree of ecological hazardEri<40 RI≤150 轻微生态风险 40<Eri≤80 151<RI≤300 中度生态风险 80<Eri≤160 301<RI≤600 强生态风险 160<Eri≤320 601<RI≤ 1200 强烈生态风险 Eri≥320 RI> 1200 极强生态风险 表 3 土壤重金属含量统计
Table 3. Statistics of heavy metals in soil
项目
ItemCr Cd Pb Cu Zn Ni As 最小值/(mg·kg−1) 25.93 0.84 45.56 26.69 222.36 13.92 6.77 最大值/(mg·kg−1) 143.61 13.62 1757.85 603.92 2788.15 85.02 5073.75 中位数/(mg·kg−1) 59.97 2.095 158.68 116.16 550.86 35.55 36.82 平均值/(mg·kg−1) 66.67 3.41 467.49 193.60 795.03 39.62 812.44 标准差/(mg·kg−1) 32.09 3.09 555.52 224.33 601.97 18.23 1442.12 变异系数/% 48.14% 90.51% 118.83% 115.88% 75.72% 46.01% 177.50% 土壤背景值/(mg·kg−1) 63.20 0.065 22.30 20.00 62.50 27.40 9.80 点位超标率/% 39.00% 100.00% 100.00% 100.00% 100.00% 72.00% 94.40% 风险筛选值/(mg·kg−1) 200.00 0.30 120.00 100.00 250.00 100.00 30.00 点位超标率/% 0.00% 100.00% 83.30% 61.10% 94.40% 0.00 61.10% 风险管控值/(mg·kg−1) 1000.00 3.00 700.00 — — — — 点位超标率/% 0.00% 38.90% 22.20% — — — — 偏度 1.20 2.29 1.43 1.93 2.14 1.04 2.07 峰度 0.81 5.92 0.57 2.79 5.69 0.68 3.56 表 4 土壤重金属生态风险评价结果
Table 4. Results of ecological risk assessment of soil heavy metals
Eri RI Cr Cd Pb Cu Zn Ni As 最小值 0.26 83.00 1.90 1.33 0.89 0.70 2.26 95.30 最大值 1.44 1362.00 73.24 41.35 11.15 4.25 1691.25 2670.35 平均值 0.67 341.21 19.48 9.68 3.18 1.98 270.81 647.01 标准差 0.32 308.65 23.15 11.22 2.41 0.91 480.71 718.30 Eri对RI贡献率/% 0.10 52.74 3.01 1.50 0.49 0.31 41.86 表 5 不同土地利用类型土壤重金属综合潜在生态风险指数(RI)
Table 5. Comprehensive potential ecological risk index (RI) of soil heavy metals under different land use types
项目
Projects综合潜在生态风险指数范围
Comprehensive potential ecological
risk index range均值
Average value占比/% 轻微
Minor中度
Moderate强
Strong强烈
Intense极强
Extremely strong农田土壤 106.49— 2221.18 596.77 12.50 50.00 0.00 25.00 12.50 尾矿周边土壤 95.30—973.48 334.73 33.33 33.33 16.67 16.67 0.00 林地土壤 198.34— 2670.35 1215.89 0.00 25.00 0.00 50.00 25.00 表 6 土壤重金属主成分
Table 6. Principal component of soil heavy metals
重金属
Heavy metal因子载荷
Factor loadingPC1 PC2 PC3 Cr −0.18 0.76 0.12 Cd 0.45 −0.06 −0.25 Pb 0.47 0.14 0.36 Cu 0.29 0.11 0.71 Zn 0.49 −0.15 − 0.0037 Ni −0.25 −0.60 0.40 As 0.39 −0.02 −0.35 特征值 3.64 1.27 1.19 方差贡献率/% 52.06 18.20 17.00 累积方差贡献率/% 52.06 70.27 87.27 -
[1] ZHOU X Y, WANG X R. Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China[J]. Journal of Cleaner Production, 2019, 230: 1-10. doi: 10.1016/j.jclepro.2019.05.098 [2] 张浙, 卢然, 伍思扬, 等. 长江经济带矿山土壤重金属污染及健康风险评价[J]. 环境科学, 2022, 43(7): 3763-3772. ZHANG Z, LU R, WU S Y, et al. Heavy metal pollution and health risk assessment of mine soil in Yangtze River economic belt[J]. Environmental Science, 2022, 43(7): 3763-3772 (in Chinese).
[3] 张义, 周心劝, 曾晓敏, 等. 长江经济带工业区土壤重金属污染特征与评价[J]. 环境科学, 2022, 43(4): 2062-2070. ZHANG Y, ZHOU X Q, ZENG X M, et al. Characteristics and assessment of heavy metal contamination in soils of industrial regions in the Yangtze River economic belt[J]. Environmental Science, 2022, 43(4): 2062-2070 (in Chinese).
[4] LI C F, ZHOU K H, QIN W Q, et al. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques[J]. Soil and Sediment Contamination:an International Journal, 2019, 28(4): 380-394. doi: 10.1080/15320383.2019.1592108 [5] 环境保护部, 国土资源部. 《全国土壤污染状况调查公报》[EB/OL]. http://www.gov.cn/govweb/foot/2014-04/17/content_2661768.htm, 2014-04-17. [6] 生态环境部. 《2021 中国生态环境状况公报》[EB/OL]. http://www.gov.cn/govweb/foot/2014-04/17/content_2661768.htm, 2014-04-17. [7] 河南省生态环境厅. 河南省2019年度土壤污染重点监管单位名录[EB/OL]. https://sthjt.henan.gov.cn/2019/09-05/1050558.html. [8] 河南省环境保护厅. 河南省重金属污染防治工作指导意见[EB/OL]. https://sthjt.henan.gov.cn/2017/09-22/1029524.html. [9] 贾晗, 刘军省, 王晓光, 等. 安徽典型硫铁矿集中开采区土壤重金属污染特征及来源解析[J]. 环境科学, 2023, 44(9): 5275-5287. JIA H, LIU J X, WANG X G, et al. Pollution characteristics and sources of heavy metals in soil of a typical pyrite concentrated mining area in Anhui Province[J]. Environmental Science, 2023, 44(9): 5275-5287(in Chinese).
[10] 余高, 陈芬, 张晓东, 等. 锰矿区周边农田土壤重金属污染特征、来源解析及风险评价[J]. 环境科学,2023, 44(8): 4416-4428, YU G, CHEN F, ZHANG X D, et al. Pollution characteristics, source analysis, and risk assessment of heavy metals in the surrounding farmlands of manganese mining area. [J]. Environmental Science, 2023, 44(8): 4416-4428(in Chinese).
[11] 王海洋, 韩玲, 谢丹妮, 等. 矿区周边农田土壤重金属分布特征及污染评价[J]. 环境科学, 2022, 43(4): 2104-2114. WANG H Y, HAN L, XIE D N, et al. Distribution characteristics of heavy metals in farmland soils around mining areas and pollution assessment[J]. Environmental Science, 2022, 43(4): 2104-2114 (in Chinese).
[12] 万梦雪, 焦文涛, 胡文友, 等. 城市工业区土壤重金属累积特征与来源解析——以上海市闵行区典型工业区为例[J]. 环境化学, 2022, 42(6): 1886-1898. WAN M X, JIAO W T, HU W Y, et al. Accumulation and source apportionment of heavy metals in urban-industrial soils – A case study in Minhang District of Shanghai[J]. Environmental Chemistry, 2023, 42(6): 1886-1898(in Chinese).
[13] MIAO X Y, MIAO D, HAO Y P, et al. Potential health risks associated to heavy metal contamination of soils in the Yellow River Delta, China[J]. Journal of Coastal Conservation, 2019, 23(3): 643-655. doi: 10.1007/s11852-019-00695-x [14] LUO C L, LIU C P, WANG Y, et al. Heavy metal contamination in soils and vegetables near an e-waste processing site, South China[J]. Journal of Hazardous Materials, 2011, 186(1): 481-490. doi: 10.1016/j.jhazmat.2010.11.024 [15] 杨振宇, 廖超林, 邹炎, 等. 湘东北典型河源区土壤重金属分布特征、来源解析及潜在生态风险评价[J]. 环境科学, 2023, 44(9): 5288-5298. YANG Z Y, LIAO C L, ZOU Y, et al. Distribution characteristics, source analysis, and potential ecological risk assessment of soil heavy metals in Typical River Source Areas of Northeastern Hunan Province[J]. Environmental Science, 2023, 44(9): 5288-5298(in Chinese).
[16] 赵长坡. 贾鲁河沉积物中重金属形态分析及潜在生态风险评价[D]. 南京: 南京大学, 2014. ZHAO C P. Potential ecological risk and speciation analysis of heavy metals in sediments from Jialu river[D]. Nanjing: Nanjing University, 2014(in Chinese).
[17] 黄波涛. 典型危废处置利用企业周边土壤重金属分布特征、来源及风险评价[J]. 环境化学, 2023, 42(2): 435-445. doi: 10.7524/j.issn.0254-6108.2022062403 HUANG B T. Distribution characteristics, sources analysis and potential ecological risk assessment of heavy metals in soils surrounding typical hazardous waste disposal and utilization plants[J]. Environmental Chemistry, 2023, 42(2): 435-445 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022062403
[18] 韦炳干, 虞江萍, 曹志强, 等. 唐山市设施菜地土壤重金属累积与有效态含量的影响特征[J]. 环境化学, 2021, 40(9): 2649-2657. doi: 10.7524/j.issn.0254-6108.2020043001 WEI B G, YU J P, CAO Z Q, et al. Factors impact on accumulation and availability of heavy metals in greenhouse vegetable soil from Tangshan City[J]. Environmental Chemistry, 2021, 40(9): 2649-2657 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020043001
[19] 胡杰, 赵心语, 王婷婷, 等. 太原市汾河河岸带土壤重金属分布特征、评价与来源解析[J]. 环境科学, 2022, 43(5): 2500-2509. HU J, ZHAO X Y, WANG T T, et al. Distribution characteristics, evaluation, and source analysis of heavy metals in soils of Fenhe riparian zone in Taiyuan city[J]. Environmental Science, 2022, 43(5): 2500-2509 (in Chinese).
[20] 张淑珂, 孙国新, 姜杰. 白城市黑土区农田土壤重金属来源解析及积累评价[J]. 环境科学学报, 2023,43(5):409-420. ZHANG S K, SUN G X, JIANG J. Analysis of heavy metal sources and evaluation of accumulation in agricultural soils in the black soil area of Baicheng City[J]. Acta Scientiae Circumstantiae, 2023,43(5):409-420(in Chinese).
[21] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017 [22] 中华人民共和国生态环境部. 《土壤环境监测技术规范》(HJ/T 166—2004)[S]. Ministry of Ecology and Environment of the People's Republic of China. The Technical Specification for soil Environmental monitoring (HJ/T 166—2004) [S](in Chinese).
[23] ZHANG H, YU M, XU H J, et al. Geochemical baseline determination and contamination of heavy metals in the urban topsoil of Fuxin City, China[J]. Journal of Arid Land, 2020, 12(6): 1001-1017. doi: 10.1007/s40333-020-0029-2 [24] 生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618—2018[S] Ministry of Ecology and Environment of the People's Republic of China, State Administration for Market Regulation. Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618—2018[S] (in Chinese).
[25] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. ZHANG G L, GONG Z T. Soil survey laboratory methods[M]. Beijing: Science Press, 2012(in Chinese).
[26] NEMEROW N L. Scientific stream pollution analysis[M]. Washington, Scripta Book Co. , 1974 [27] 赖书雅, 董秋瑶, 宋超, 等. 南阳盆地东部山区土壤重金属分布特征及生态风险评价[J]. 环境科学, 2021, 42(11): 5500-5509. LAI S Y, DONG Q Y, SONG C, et al. Distribution characteristics and ecological risk assessment of soil heavy metals in the eastern mountainous area of the Nanyang Basin[J]. Environmental Science, 2021, 42(11): 5500-5509 (in Chinese).
[28] 邵丰收, 周皓韵. 河南省主要元素的土壤环境背景值[J]. 河南农业, 1998(10): 29. SHAO F S, ZHOU H Y. Soil environmental background values for major elements in Henan Province[J]. Henan Agriculture, 1998(10): 29(in Chinese)
[29] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [30] 张雅然, 车霏霏, 付正辉, 等. 青海湖沉积物重金属分布及其潜在生态风险分析[J]. 环境科学, 2022, 43(6): 3037-3047. ZHANG Y R, CHE F F, FU Z H, et al. Distribution and potential ecological risk assessment of heavy metals in sediments of Lake Qinghai[J]. Environmental Science, 2022, 43(6): 3037-3047 (in Chinese).
[31] 陈芬, 余高, 侯建伟, 等. 矿渣运输道路两侧农田土壤重金属风险评价[J]. 西南大学学报(自然科学版), 2020, 42(11): 9-21. CHEN F, YU G, HOU J W, et al. Risk assessment of heavy metals in farmland soils on both sides of the slag transportation road[J]. Journal of Southwest University (Natural Science), 2020, 42(11): 9-21 (in Chinese).
[32] 李宇庆, 陈玲, 仇雁翎, 等. 上海化学工业区土壤重金属元素形态分析[J]. 生态环境, 2004(2): 154-155. LI Y Q, CHEN L, QIU Y L, et al. Speciation of heavy metals in soil from Shanghai Chemical Industry Park[J]. Ecology and Environment, 2004(2): 154-155 (in Chinese).
[33] SINGH A K, HASNAIN S I, BANERJEE D K. Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River–a tributary of the lower Ganga, India[J]. Environmental Geology, 1999, 39(1): 90-98. doi: 10.1007/s002540050439 [34] O’REILLY WIESE S B, MACLEOD C L, LESTER J N. A recent history of metal accumulation in the sediments of the Thames Estuary, United Kingdom[J]. Estuaries, 1997, 20(3): 483-493. doi: 10.2307/1352608 [35] PRESLEY B J, TREFRY J H, SHOKES R F. Heavy metal inputs to Mississippi Delta sediments[J]. Water, Air, and Soil Pollution, 1980, 13(4): 481-494. doi: 10.1007/BF02191849 [36] 国家环境保护总局. 土壤环境监测技术规范[M]. 北京: 中国环境科学出版社, 2005. State Environmental Protection Administration. The Technical Specification for soil Environmental monitoring [M]. Beijing: China Environmental Science Press, 2005(in Chinese).
[37] 曾清如, 周细红, 杨仁斌, 等. 不同来源重金属在土壤中的形态分布差异[J]. 农村生态环境, 1994(3): 48-51. ZENG Q R, ZHOU X H, YANG R B, et al. Fractionation of Pb. Zn and Cd in three polluted soils and their residues in soybean[J]. Rural Eco-Environment, 1994(3): 48-51 (in Chinese).
[38] 李昊哲. 不同地膜条件下重金属在农田土壤的垂向分布特性研究[D]. 太原: 太原理工大学, 2018. LI Z H. Study on the distribution characteristics of heavy metals in soil profile under different plastic film mulching[D]. Taiyuan: Taiyuan University of Technology, 2018 (in Chinese).