-
纳滤技术作为近年来国内外研究和应用热点的膜分离技术,可有效去除污染水体中化学需氧量(COD)、总磷(TP)、重金属和部分盐分,使出水指标达到《地表水环境质量标准》中Ⅲ类水标准,因而在污水深度处理、饮用水软化等领域得到了广泛应用,如纳滤对大部分微量有机污染物的截留率达到70%以上[1],大部分再生水中的微量新污染物在经过纳滤处理之后未检出[2]。然而,纳滤浓水处理问题一直是影响其推广应用的关键限制因素之一[3]。面对纳滤膜浓水COD值高、盐分浓度大、BOD5/COD较低、可生化性差等特点,膜浓水常用的处理方式包括超滤反渗透、蒸发浓缩处理等,但这些处理技术仍面临着污染物无法根本去除、能耗高、二次污染严重等缺点,因此,寻找高效水处理技术成为膜浓水深度处理的关键[4-5]。
臭氧氧化技术是一种广泛应用于饮用水消毒和污水处理的氧化技术,具有氧化活性高、应用范围广、生产操作简单等优点[6-8]。针对纳滤膜浓水的高污染特征,单独臭氧氧化技术仍存在臭氧利用率较低、氧化能力不足等限制。近年来发展的电催化臭氧氧化技术通过在传统臭氧氧化体系内引入电催化剂,利用电场作用促进臭氧分解过程中活性氧物种的生成,可显著提高氧化效率和反应速度,成为臭氧氧化技术关注的重点[9-10]。利用电催化臭氧氧化技术实现纳滤膜浓水高效处理表现出良好的潜力,然而,基于电催化臭氧氧化技术处理膜浓水的研究仍鲜见报道。
基于此,本研究以实际纳滤膜浓水为目标水体,通过构建电催化臭氧氧化体系探究其对纳滤膜浓水的深度净化性能,评估其对实际纳滤膜浓水中有机质和毒性的削减效果,为进一步完善膜法污水深度处理技术提供支撑。
电催化臭氧氧化技术深度净化纳滤膜浓水
Advanced purification of nanofiltration membrane concentrated water by electrocatalytic ozonation technology
-
摘要: 纳滤膜浓水高效无害化处置是膜法污水深度处理值得关注的问题,传统臭氧氧化技术对膜浓水处置存在处理效率较低、氧化能力有限等问题。针对实际再生水深度净化工艺,构建并评估了电催化臭氧氧化技术对纳滤膜浓水净化效果。电催化臭氧氧化处理180 min可以去除膜浓水中72%的COD和71%的TOC,其一级反应速率常数是单独电催化氧化的14倍、单独臭氧氧化的1.5倍。进一步利用斜生栅藻生长抑制率指标评价了3种氧化过程对膜浓水处理时的毒性削减效果,单独臭氧氧化对膜浓水处理后的斜生栅藻生长抑制率达24.6%,而电催化臭氧氧化深度处理后斜生栅藻生长抑制率仅16.0%,电催化臭氧氧化技术处理后膜浓水的残存生物毒性显著降低。Abstract: The efficient treatment of nanofiltration membrane concentrated water is a noteworthy issue in the membrane-based wastewater treatment technologies. The traditional ozonation technology has the disadvantages such as low treatment efficiency and insufficient oxidation capacity for the treatment and disposal of membrane concentrated water. In this study, for the real process for advanced purification of the reclaimed water, the electrocatalytic ozonation technology was constructed to evaluate its performance on treating nanofiltration membrane concentrated water. Electrocatalytic ozonation could remove 72 % of COD and 71 % of TOC from membrane concentrated water after 180 min treatment. The first-order reaction rate constant was 14 times that of electrochemical oxidation alone and 1.5 times that of ozonation alone. Furthermore, the toxicity reduction performance of the three oxidation processes on membrane concentrated water treatment was evaluated by using the growth inhibition rate of Scenedesmus obliquus. The growth inhibition rate of Scenedesmus obliquus in membrane concentrated water treated by ozonation alone reached 24.6%, while the growth inhibition rate of Scenedesmus obliquus after electrocatalytic ozonation treatment was only 16.0%. The biological toxicity of membrane concentrated water treated by electrocatalytic ozonation system decreased significantly.
-
Key words:
- electrocatalytic /
- ozonation /
- reclaimed water /
- ecological risk /
- membrane concentrated water
-
-
[1] 张攀, 文湘华, 王波, 等. 纳滤生产再生水示范工程运行效果分析[J]. 环境工程学报, 2017, 11(9): 4985-4992. doi: 10.12030/j.cjee.201701044 [2] AGENSON K O, OH J-I, URASE T. Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: controlling parameters of process[J]. Journal of Membrane Science. 2003, 225: 91-103. doi: 10.1016/j.memsci.2003.08.006 [3] FADIL A E, VERBEK R, KYBURZ M, et al. From academia to industry: Success criteria for upscaling nanofiltration membranes for water and solvent applications[J]. Journal of Membrane Science. 2023, 675: 121393. doi: 10.1016/j.memsci.2023.121393 [4] ZHANG X, KOIRALA R, PRAMANIK B, et al. Challenges and advancements in membrane distillation crystallization for industrial applications[J]. Environmental Research. 2023, 234: 116577. doi: 10.1016/j.envres.2023.116577 [5] 赵春霞, 顾平, 张光辉. 反渗透浓水处理现状与研究进展[J]. 中国给水排水, 2009, 25(18): 2-5. [6] GERRITY D, GAMAGE S, HOLADY J C, et al. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection[J]. Water Research. 2011, 45: 2155-2165. doi: 10.1016/j.watres.2010.12.031 [7] WANG Y, YU G. Challenges and pitfalls in the investigation of the catalytic ozonation mechanism: A critical review[J]. Journal of Hazardous Materials. 2022, 436: 129157. doi: 10.1016/j.jhazmat.2022.129157 [8] YU Y H, YU C, WU Z, et al. Switching the primary mechanism from a radical to a nonradical pathway in electrocatalytic ozonation by onsite alternating anode and cathode[J]. Chemical Engineering Journal. 2023, 457: 141340. doi: 10.1016/j.cej.2023.141340 [9] LI Z, LI S, TANG Y, et al. Highly efficient degradation of perfluorooctanoic acid: An integrated photo-electrocatalytic ozonation and mechanism study[J]. Chemical Engineering Journal. 2020, 391: 123533. doi: 10.1016/j.cej.2019.123533 [10] 李默. 氧化-超滤工艺对污水厂二级出水有机物及生物毒性削减效能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [11] 潘雪梅, 邱芳芳, 王亲媛, 等. 有机改性层状双金属氢氧化物与甲基橙联合暴露对小球藻的毒性影响[J]. 环境工程, 2023, 41(1): 26-34. doi: 10.13205/j.hjgc.202301004 [12] 周宇. 电增强活性炭纤维—臭氧体系去除水中硝基苯的研究[D]. 重庆: 重庆大学, 2016. [13] 郝瑞霞, 曹可心, 邓亦文. 城市污水处理过程中有机污染物三维荧光特性的变化规律[J]. 分析测试学报, 2007, 26(6): 789-792. doi: 10.3969/j.issn.1004-4957.2007.06.005 [14] HALIM M, SPACCINI R, PARLANTI L, et al. Differences in fluorescence properties between humic acid and its size fractions separated by preparative HPSEC[J]. Journal of Geochemical Exploration. 2013, 129: 23-27. doi: 10.1016/j.gexplo.2012.11.006 [15] MORADI N, VAZQUEZ C L, HERNANDEZ H G, et al. Removal of contaminants of emerging concern from the supernatant of anaerobically digested sludge by O3 and O3/H2O2: Ozone requirements, effects of the matrix, and toxicity[J]. Environmental Research. 2023, 235: 116597. doi: 10.1016/j.envres.2023.116597 [16] CUI B, FU S, HAO X, et al. Synergistic effects of simultaneous coupling ozonation and biodegradation for coking wastewater treatment: Advances in COD removal, toxic elimination, and microbial regulation[J]. Chemosphere. 2023, 318: 137956. doi: 10.1016/j.chemosphere.2023.137956