-
磷是水生植物和藻类生长的主要营养元素之一,也是水域重要的污染物,主要随河川径流进入水体[1-2]。水体中磷污染主要为外源污染,即农田径流引起的磷输出、工业废水的磷排放和生活污水的直接输入[3]。内源污染主要为沉积物的释放和死亡生物体分解[4]。磷元素进入河流湖泊中,主要在水体-沉积物之间进行迁移转化[5],水体和沉积物存在吸附-释放动态平衡,一部分污染物可通过沉淀或吸附作用进入沉积物,当水体水质改善时,沉积物中磷会向上覆水体释放,成为影响水质的二次污染源[6-8]。磷过量输入会导致水体富营养化、水体缺氧等一系列环境效应,最后形成恶性循环,对生态系统结构和功能造成威胁[9-11]。
汾河作为山西主要的水源之一,其水质状况关系到整个流域水质安全。近年来,对汾河流域健康评价和富营养化研究较多,但对磷污染赋存特征和污染物解析的研究相对较少。本研究以磷为研究指标,通过测定水体中总磷(TP)、有机磷(OP)、无机磷(IP)浓度和沉积物中总磷浓度,探讨汾河流域磷的分布情况和赋存形态。同时采集不同类型排污口样品测定其磷的含量及形态,在此基础上构建SWAT模型,探讨汾河流域磷的污染来源。研究结果以期为汾河流域的水环境治理提供技术依据。
汾河流域磷赋存形态及来源解析
Phosphorus fractions and source analysis in Fenhe River Basin
-
摘要: 汾河是山西省工农业生产和人民生活用水的主要水源,水质质量对整个流域的健康程度起着至关重要的作用,因此解析流域水质及其污染源能为流域水环境治理和管理提供基础数据和技术支持。文章以汾河流域为研究区,通过现场实测结合模型构建,分析汾河流域磷污染的赋存特征,量化汾河流域磷的污染来源。结果表明:汾河流域水体总磷浓度范围在0.011~0.433 mg/L,平均值0.187 mg/L,上游磷含量满足水质Ⅱ类考核指标,中下游基本满足Ⅳ类考核指标;汾河流域水体中无机磷浓度在0.000~0.304 mg/L,平均值0.093 mg/L,有机磷浓度范围在0.011~0.295 mg/L,平均值0.094 mg/L,其中上游以有机磷为主,中下游有机磷、无机磷占比相当,这与沿河产业分布密切相关。沉积物中磷含量为63.9~492 mg/kg,平均值为257 mg/kg,属于轻度污染。总磷的沉积物-水分配系数为313~36182 L/kg,总体呈现上游高下游低的趋势,特别是流量相对静止、沉积物有机质含量相对较高的汾河水库出口Kp较高。利用SWAT模型对汾河流域的总磷污染现状及污染源进行解析,城镇居民生活污水排放是汾河流域总磷的重要污染源。Abstract:
Fen River was the main source of water for industrial and agricultural production and people's living in Shanxi Province. The water quality played a crucial role in the health. Therefore, the analysis of the water quality and its pollution sources can provide basic data and technical support for water environment management and management in the basin.The paper analyzed the phosphorus fractions and quantified the source of phosphorus pollution in Fenhe River basin through field measurement and model construction.The results showed that the concentration of total phosphorus in fenhe River basin ranged from 0.011 mg·L−1 to 0.433 mg·L−1 with an average of 0.187 mg·L−1,the content of phosphorus in upper reaches meet standard Ⅱ and the lower reaches meet standard Ⅳ.The concentration of inorganic phosphorus in fenhe River basin ranged from 0.000 mg·L−1 to 0.304 mg·L−1 with an average of 0.093 mg·L−1, and the concentration of organic phosphorus ranged from 0.011 mg·L−1 to 0.295 mg·L-−1 with an average of 0.094 mg·L−1,Organic phosphorus was dominant in the upper reaches and the proportion of organic phosphorus and inorganic phosphorus was similar in the middle and lower reaches, which was closely related to the industrial distribution along the river in the lower reaches.The phosphorus content in sediments ranged from 63.9 mg·kg−1 to 492 mg·kg−1 with an average of 257 mg·kg−1,which belonged to mild pollution.The sediment-water distribution ranged from 313 L·kg−1 to 36182 L·kg−1, with a general trend of high in the upper reaches and low in the lower reaches, especially in Fenhe Reservoir, where the flow was relatively static and the sediment organic matter content was relatively high.The Soil and Water Assessment Tool (SWAT) model was used to analyze the present situation and pollution sources of total phosphorus in Fenhe River Basin, the results showed that urban sewage discharge was an important source of phosphorus pollution in Fenhe River basin. -
Key words:
- Fenhe River Basin /
- phosphorus /
- fractions /
- sources analysis
-
表 1 汾河流域水体和沉积物中磷含量
断面 水体总磷/mg·L−1 水体无机磷/mg·L−1 水体有机磷/mg·L−1 沉积物磷/mg·kg−1 沉积物有机质/mg·kg−1 2020目标值/mg·L−1 S1 0.014 0.002 0.012 492.0 30.75 0.1(Ⅱ类) S2 0.022 0.000 0.022 63.9 9.50 0.1(Ⅱ类) S3 0.011 0.000 0.011 398.0 19.42 0.1(Ⅱ类) S4 0.014 0.000 0.014 162.0 4.65 0.2(Ⅲ类) S5 0.046 0.006 0.040 210.0 9.52 0.2(Ⅲ类) S6 0.015 0.000 0.015 78.3 3.66 0.1(Ⅱ类) S7 0.312 0.013 0.295 97.7 15.33 0.4(Ⅴ类) S8 0.202 0.116 0.086 363.0 12.22 0.4(Ⅴ类) S9 0.377 0.285 0.092 366.0 16.18 0.4(Ⅴ类) S10 0.303 0.121 0.182 134.0 11.26 0.4(Ⅴ类) S11 0.205 0.071 0.134 309.0 17.69 0.4(Ⅴ类) S12 0.259 0.203 0.056 386.0 9.13 0.4(Ⅴ类) S13 0.433 0.181 0.252 347.0 11.34 0.4(Ⅴ类) S14 0.410 0.304 0.106 198.0 12.80 0.4(Ⅴ类) 平均值 0.188 0.093 0.094 257.0 — — -
[1] 唐小娅, 童思陈, 黄国鲜, 等. 三峡水库总磷时空变化特征及滞留效应分析[J]. 环境科学, 2020, 41(5): 2096 − 2106. doi: 10.13227/j.hjkx.201911073 [2] KUWAYAMA Y, OLMStTEAD S M, WIETELMAN D C, et al. Trends in nutrient-related pollution as a source of potential water quality damages: A case study of Texas, USA[J]. Science of the total environment, 2020, 724(prepublish): 137962. [3] 蔡雅梅. 汾河临汾段典型河岸带氮磷时空分布规律及其影响因素研究[D]. 西安: 西安理工大学, 2021. [4] 秦伯强, 朱广伟, 张路, 等. 大型潜水湖泊沉积物内源营养盐释放模式及其估算方法——以太湖为例[J]. 中国科学:D辑:地球科学, 2005, 38(增2): 33 − 44. [5] 车霏霏, 陈俊伊, 王书航, 等. 南湖水系水-沉积物磷时空分布、影响因素及控制对策[J]. 环境工程技术学报, 2020, 10(06): 928 − 935. doi: 10.12153/j.issn.1674-991X.20200068 [6] 蔡梅, 陆志华, 王元元, 等. 太湖不同介质中磷的污染特征及其治理启示[J]. 环境科学, 2022, 43(5): 2575 − 2585. [7] CANTER L W. River water quality monitoring[M]. Boca Raton Chemical Rubber Company Press, 2017, 75(10): 189-239. [8] VOROSMARTY C J, MCINTYRE P B, GESSNER M O, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315): 555 − 61. doi: 10.1038/nature09440 [9] FIELDING J J, CROUDACE I W, KEMP A E S, et al. Tracing lake pollution, eutrophication and partial recovery from the sediments of Windermere, UK, using geochemistry and sediment microfabrics[J]. Science of the total environment, 2020, 722(prepublish): 137745. [10] YANG C H, YANG P, GENG J, et al. Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake(Lake Chaohu, China) and its contribution to lake eutrophication[J]. Environmental pollution, 2020, 262(prepublish): 114292. [11] 张云霞, 魏峣, 汪涛. 沱江流域河流氮、磷浓度时空分布特征及污染状况评价[J]. 环境污染与防治, 2021, 43(8): 1028 − 1034. doi: 10.15985/j.cnki.1001-3865.2021.08.018 [12] 中国环境监测总站, 辽宁省环境监测中心站, 环境保护部科技标准司. 水质 采样技术导则HJ 494—2009[S]. 北京: 中国环境科学出版社, 2009. [13] 北京市环保监测中心, 上海市环境监测中心. 水质 总磷的测定 钼氨酸分光光度法GB 11893—89[S]. 北京: 中国标准出版社, 1989. [14] 国家环境保护局, 国家质检总局. 水和土壤质量 有机磷农药的测定气相色谱法GB/T 14552—93. [S]. 北京: 中国标准出版社, 1993. [15] . 甘肃省环境监测中心站, 河南省环境监测中心站, 青海省环境监测中心站, 等. 土壤 总磷的测定 碱融-钼锑抗分光光度法HJ 632—2011[S]. 北京: 中国标准出版社, 2011. [16] 王伟. 疏水性有机物污染物在水-土/沉积物体系中的环境行为与归趋[D]. 杭州: 浙江大学, 2011. [17] 金晓丹, 吴昊, 陈志明, 等. 长江河口水库沉积物磷形态、吸附和释放特性[J]. 环境科学, 2015, 36(2): 448 − 456. doi: 10.13227/j.hjkx.2015.02.011 [18] 吴吉春, 张景飞. 水环境化学[M]. 北京: 中国水利水电出版社, 2009: 144.