低压气相色谱柱10 min内测定黄瓜中120种农药残留

刘家新, 朱雨田, 曾婷, 唐俗, 颜伟贤. 低压气相色谱柱10 min内测定黄瓜中120种农药残留[J]. 环境化学, 2023, 42(5): 1767-1770.
引用本文: 刘家新, 朱雨田, 曾婷, 唐俗, 颜伟贤. 低压气相色谱柱10 min内测定黄瓜中120种农药残留[J]. 环境化学, 2023, 42(5): 1767-1770.
LIU Jiaxin, ZHU Yutian, ZENG Ting, TANG Su, YAN Weixian. Determination of 120 pesticide residues in cucumber within 10 minutes by low-pressure gas chromatography column[J]. Environmental Chemistry, 2023, 42(5): 1767-1770.
Citation: LIU Jiaxin, ZHU Yutian, ZENG Ting, TANG Su, YAN Weixian. Determination of 120 pesticide residues in cucumber within 10 minutes by low-pressure gas chromatography column[J]. Environmental Chemistry, 2023, 42(5): 1767-1770.

低压气相色谱柱10 min内测定黄瓜中120种农药残留

Determination of 120 pesticide residues in cucumber within 10 minutes by low-pressure gas chromatography column

  • 摘要: 采用低压气相色谱柱(LPGC)结合三重四极杆串联质谱技术( GC-MS /MS)测定黄瓜中120种农药残留的分析方法. 该方法中120种农药在0.010—0.400 mg·L−1范围内具有良好的线性相关性,相关系数(R2)均大于0.995. 在0.02、0.04、0.10 mg·kg−1不同质量浓度水平下做加标实验,回收率为73.6%—115%,相对标准偏差为 (SRSDn=3)0.0560%—12.6%,定量限为0.01 mg·kg−1. 该方法操作简便、高效快速,适用于黄瓜中农药多残留的快速筛查.
  • 加载中
  • 表 1  120种农药的保留时间、相关系数

    Table 1.  Retention time, lcorrelation coefficient, of the 120 pesticides

    农药保留时间/ minR2农药保留时间/ minR2农药保留时间/ minR2
    Acephate3.780.9986Fenthion-sulfoxide6.400.9992Fenthion5.630.9985
    Alachlor5.400.9992Fenvalerate7.930.9989Fenthion-sulfone6.420.9980
    Aldrin5.670.9994Fipronil5.870.9979Permethrin7.410.9986
    Benfluralin4.630.9984Fluazifop6.260.9997Phorate4.720.9985
    Bifenox6.980.9985Flucythrinate7.760.9991Phorate-sulfone5.610.9988
    Bifenthrin6.860.9988Fludioxonil6.170.9990Phorate-sulfoxide5.570.9994
    Bromopropylat6.890.9982Fluorodifen6.100.9972Phosalone7.100.9989
    Butachlor6.040.9989Flutolanil6.100.9990Phosfolan5.880.9990
    Chlorfenvinphos5.870.9986Fluvalinate7.970.9980Phosmet6.900.9994
    Chloroneb4.070.9993Fonofos5.020.9989Phosphamidon5.060.9983
    Chlorpropham4.560.9994Hexaconazole6.130.9989Piperonyl-butoxide6.700.9988
    Chlorpyrifos5.630.9993Imazalil6.150.9991Pirimicarb5.210.9990
    Chlorpyrifos-methyl5.360.9989Iprodione6.810.9985Pirimiphos-methyl5.500.9988
    Clomazone4.940.9991Isazofos5.130.9991Pretilachlor6.160.9990
    Coumaphos7.480.9981Isocarbophos5.680.9992Procymidone5.930.9984
    Cyfluthrin7.600.9991Isofenphos-methyl5.780.9991Profenofos6.150.9992
    Cypermethrin7.700.9989Isoprocarb4.170.9984Prometryn5.410.9984
    Cyproconazole6.320.9990Isoprothiolane6.140.9997Propanil5.300.9990
    Cyprodinil5.790.9992Kresoxim-methyl6.230.9989Propiconazole6.630.9994
    Deltamethrin8.170.9984Lambda-cyhalothrin7.150.9982Pyridaben7.450.9991
    Diazinon5.030.9991Malathion5.550.9989Pendimethalin5.820.9984
    Dichlobenil3.470.9985Metalaxyl5.420.9985Pentachloroaniline5.280.9991
    Dichlorvos3.030.9986Methamidophos2.960.9982Pyriproxyfen7.090.9990
    Dicloran4.850.9983Methidathion5.990.9991Quinalphos5.890.9997
    Dicofol6.360.9979Methoxychlor6.920.9996Quinoxyfen6.600.9984
    Dieldrin6.240.9996Metolachlor5.620.9988Quintozene5.020.9981
    Difenoconazole8.100.9987Metribuzin5.310.9980Sulfotep4.670.9983
    Dimethoate4.850.9985Mevinphos3.750.9991Tebuconazole6.700.9985
    Diphenylamine4.480.9988Molinate4.180.9986Tebufenpyrad6.930.9980
    Edifenphos6.600.9986Monocrotophos4.670.9990Tecnazene4.450.9994
    Endosulfan-16.090.9980Myclobutanil6.220.9982Terbufos4.980.9986
    Endosulfan-26.410.9992Naled3.020.9990Terbufos-sulfone5.840.9983
    Epoxiconazole6.790.9983Omethoate4.400.9986Tetrachlorvinphos6.030.9993
    Ethoprophos4.500.9979Oxadiazon6.190.9984Tetraconazole5.670.9989
    Etofenprox7.730.9980Oxadixy6.450.9990Tolclofos-methyl5.390.9987
    Etoxazole6.920.9999Oxyfluorfen6.190.9989Triadimefon5.650.9993
    Fenamidone3.780.9989Paclobutrazol6.020.9994Triadimenol5.900.9989
    Fenbuconazole5.400.9983Parathion5.640.9963Triazophos6.490.9981
    Fenitrothion5.670.9992Parathion-methyl5.360.9986Trifloxystrobin6.560.9988
    Fenpropathrin4.630.9986Penconazole5.840.9990Vinclozolin5.350.9989
    农药保留时间/ minR2农药保留时间/ minR2农药保留时间/ minR2
    Acephate3.780.9986Fenthion-sulfoxide6.400.9992Fenthion5.630.9985
    Alachlor5.400.9992Fenvalerate7.930.9989Fenthion-sulfone6.420.9980
    Aldrin5.670.9994Fipronil5.870.9979Permethrin7.410.9986
    Benfluralin4.630.9984Fluazifop6.260.9997Phorate4.720.9985
    Bifenox6.980.9985Flucythrinate7.760.9991Phorate-sulfone5.610.9988
    Bifenthrin6.860.9988Fludioxonil6.170.9990Phorate-sulfoxide5.570.9994
    Bromopropylat6.890.9982Fluorodifen6.100.9972Phosalone7.100.9989
    Butachlor6.040.9989Flutolanil6.100.9990Phosfolan5.880.9990
    Chlorfenvinphos5.870.9986Fluvalinate7.970.9980Phosmet6.900.9994
    Chloroneb4.070.9993Fonofos5.020.9989Phosphamidon5.060.9983
    Chlorpropham4.560.9994Hexaconazole6.130.9989Piperonyl-butoxide6.700.9988
    Chlorpyrifos5.630.9993Imazalil6.150.9991Pirimicarb5.210.9990
    Chlorpyrifos-methyl5.360.9989Iprodione6.810.9985Pirimiphos-methyl5.500.9988
    Clomazone4.940.9991Isazofos5.130.9991Pretilachlor6.160.9990
    Coumaphos7.480.9981Isocarbophos5.680.9992Procymidone5.930.9984
    Cyfluthrin7.600.9991Isofenphos-methyl5.780.9991Profenofos6.150.9992
    Cypermethrin7.700.9989Isoprocarb4.170.9984Prometryn5.410.9984
    Cyproconazole6.320.9990Isoprothiolane6.140.9997Propanil5.300.9990
    Cyprodinil5.790.9992Kresoxim-methyl6.230.9989Propiconazole6.630.9994
    Deltamethrin8.170.9984Lambda-cyhalothrin7.150.9982Pyridaben7.450.9991
    Diazinon5.030.9991Malathion5.550.9989Pendimethalin5.820.9984
    Dichlobenil3.470.9985Metalaxyl5.420.9985Pentachloroaniline5.280.9991
    Dichlorvos3.030.9986Methamidophos2.960.9982Pyriproxyfen7.090.9990
    Dicloran4.850.9983Methidathion5.990.9991Quinalphos5.890.9997
    Dicofol6.360.9979Methoxychlor6.920.9996Quinoxyfen6.600.9984
    Dieldrin6.240.9996Metolachlor5.620.9988Quintozene5.020.9981
    Difenoconazole8.100.9987Metribuzin5.310.9980Sulfotep4.670.9983
    Dimethoate4.850.9985Mevinphos3.750.9991Tebuconazole6.700.9985
    Diphenylamine4.480.9988Molinate4.180.9986Tebufenpyrad6.930.9980
    Edifenphos6.600.9986Monocrotophos4.670.9990Tecnazene4.450.9994
    Endosulfan-16.090.9980Myclobutanil6.220.9982Terbufos4.980.9986
    Endosulfan-26.410.9992Naled3.020.9990Terbufos-sulfone5.840.9983
    Epoxiconazole6.790.9983Omethoate4.400.9986Tetrachlorvinphos6.030.9993
    Ethoprophos4.500.9979Oxadiazon6.190.9984Tetraconazole5.670.9989
    Etofenprox7.730.9980Oxadixy6.450.9990Tolclofos-methyl5.390.9987
    Etoxazole6.920.9999Oxyfluorfen6.190.9989Triadimefon5.650.9993
    Fenamidone3.780.9989Paclobutrazol6.020.9994Triadimenol5.900.9989
    Fenbuconazole5.400.9983Parathion5.640.9963Triazophos6.490.9981
    Fenitrothion5.670.9992Parathion-methyl5.360.9986Trifloxystrobin6.560.9988
    Fenpropathrin4.630.9986Penconazole5.840.9990Vinclozolin5.350.9989
    下载: 导出CSV

    表 2  不同方法测定黄瓜中甲胺磷和溴氰菊酯的结果

    Table 2.  Results of determination of methamidophos and deltamethrin in cucumber by different methods

    样品
    Sample
    甲胺磷/ (mg·kg−1溴氰菊酯/(mg·kg−1
    LPGCTG-5MSLPGCTG-5MS
    Cucumber 10.06030.06160.06610.0673
    Cucumber 20.06220.06190.06760.0643
    Cucumber 30.05690.05510.06570.0654
    Cucumber 40.04020.04020.04780.0458
    Cucumber 50.03360.03380.04710.0431
    Cucumber 60.03340.03430.04730.0448
    样品
    Sample
    甲胺磷/ (mg·kg−1溴氰菊酯/(mg·kg−1
    LPGCTG-5MSLPGCTG-5MS
    Cucumber 10.06030.06160.06610.0673
    Cucumber 20.06220.06190.06760.0643
    Cucumber 30.05690.05510.06570.0654
    Cucumber 40.04020.04020.04780.0458
    Cucumber 50.03360.03380.04710.0431
    Cucumber 60.03340.03430.04730.0448
    下载: 导出CSV
  • [1] 姚家彪, 赵颖, 潘伟, 等. 蔬菜和食用菌中氨基甲酸酯类农药残留检测技术 [J]. 应用化学, 2010, 27(4): 488-493.
    [2] LI J X, SUN M Y, CHANG Q Y, et al. Determination of pesticide residues in teas via QuEChERS combined with dispersive liquid–liquid microextraction followed by gas chromatography–tandem mass spectrometry [J]. Chromatographia, 2017, 80(9): 1447-1458. doi: 10.1007/s10337-017-3362-7
    [3] 张丽静, 任召珍. GC-MS/MS法快速筛查鲜西洋参中40种农药残留 [J]. 中国果菜, 2022, 42(8): 59-63,69. doi: 10.19590/j.cnki.1008-1038.2022.08.010
  • 加载中
表( 2)
计量
  • 文章访问数:  958
  • HTML全文浏览数:  958
  • PDF下载数:  47
  • 施引文献:  0
出版历程
  • 刊出日期:  2023-05-27
刘家新, 朱雨田, 曾婷, 唐俗, 颜伟贤. 低压气相色谱柱10 min内测定黄瓜中120种农药残留[J]. 环境化学, 2023, 42(5): 1767-1770.
引用本文: 刘家新, 朱雨田, 曾婷, 唐俗, 颜伟贤. 低压气相色谱柱10 min内测定黄瓜中120种农药残留[J]. 环境化学, 2023, 42(5): 1767-1770.
LIU Jiaxin, ZHU Yutian, ZENG Ting, TANG Su, YAN Weixian. Determination of 120 pesticide residues in cucumber within 10 minutes by low-pressure gas chromatography column[J]. Environmental Chemistry, 2023, 42(5): 1767-1770.
Citation: LIU Jiaxin, ZHU Yutian, ZENG Ting, TANG Su, YAN Weixian. Determination of 120 pesticide residues in cucumber within 10 minutes by low-pressure gas chromatography column[J]. Environmental Chemistry, 2023, 42(5): 1767-1770.

低压气相色谱柱10 min内测定黄瓜中120种农药残留

  • 1. 深圳市计量质量检测研究院,深圳,518100
  • 2. 赛默飞世尔科技(中国)有限公司,广州 ,510000

摘要: 采用低压气相色谱柱(LPGC)结合三重四极杆串联质谱技术( GC-MS /MS)测定黄瓜中120种农药残留的分析方法. 该方法中120种农药在0.010—0.400 mg·L−1范围内具有良好的线性相关性,相关系数(R2)均大于0.995. 在0.02、0.04、0.10 mg·kg−1不同质量浓度水平下做加标实验,回收率为73.6%—115%,相对标准偏差为 (SRSDn=3)0.0560%—12.6%,定量限为0.01 mg·kg−1. 该方法操作简便、高效快速,适用于黄瓜中农药多残留的快速筛查.

English Abstract

  • 蔬菜是我国不可或缺的主要食物,在种植过程中不合理使用农药可能造成蔬菜中农药残留量超标,影响人体的健康. 随着人们越来越关注农药残留问题,对蔬菜中的农药残留进行快速检测显得尤其重要. 近年QuEChERS 技术因其简单、低廉、快速有效等特点在农药残留分析中得以迅速发展,传统的前处理技术如固相萃取法[1]、凝胶色谱法[1]、液液萃取法[2]也在被逐步取代. 气相色谱串联质谱仪也凭借其选择性好、灵敏度高、准确定量等优势而成为农药分析的首选仪器[3]. 分析时间过长严重制约了农药残留检测的快速和高效,无法体现QuEChERS技术所带来的前处理优势,不利于食用农产品质量安全监管的快速处理.

    传统的仪器检测方法时间长、化合物少,不能快速高效的应对如今频繁爆发的食品安全事件. 本文建立的采用QuEChERS前处理,基于LPGC快速定量测定黄瓜中120种农药残留的检测方法,适用性广、操作简便、灵敏度高、快速高效,为突发的食品安全事件提供了有效的技术支撑手段.

    • TSQ-9000 三重四极杆气质联用仪(GC-MS /MS,美国赛默飞世尔科技公司);高速离心机(3K15,德国Sigma);TG-5LPGC-MS色谱柱(16 m×0.53 mmID×1μm+5 m×0.18 mmID,美国赛默飞世尔科技公司);电子天平(Cubis II,德国Sartorius);涡旋混匀器(IKA Ms-3-basic,德国IKA) ;氮吹仪(Turbo Vap LV,瑞典Biotage Sweden AB).

      乙腈、丙酮(色谱纯,德国MERCK);QuEChERS净化包(安捷伦科技有限公司);无水硫酸镁(分析纯,广州化学试剂厂) ;乙二胺-N-丙基硅烷(PSA)粉(40—60 μm,安捷伦科技有限公司) ;石墨化炭黑(GCB)粉(40—120 μm,安捷伦科技有限公司);120种农残混合标准溶液(100 μg·mL−1,天津阿尔塔科技有限公司);黄瓜(当地农贸市场).

    • 混合标准溶液制备:吸取1mL的农药标准溶液于10.0 mL容量瓶中,丙酮定容至刻度,配制成质量浓度为10.0 mg·L−1 的标准储备液,贮存在4℃冰箱中备用.

    • 黄瓜用粉碎机粉碎后,准确称取10 g试样(精确至0.01 g)于50 mL塑料离心管中,加入10 mL乙腈、QuEChERS净化包(4 g硫酸镁、1 g氯化钠、1 g柠檬酸钠、0.5 g柠檬酸氢二钠)及1颗陶瓷均质子,盖上离心管盖,剧烈震荡1 min后,以4200 r·min−1离心5 min. 吸取6 mL上清液加到内含885 mg硫酸镁、150 mg PSA及15 mg GCB的15 mL塑料离心管中;涡旋混匀 1 min. 4200 r·min−1离心5 min,准确吸取1 mL上清液于10 mL试管中,40℃水浴中氮气吹至近干. 加入1 mL丙酮复溶,过0.22 µm微孔滤膜,供气相色谱-质谱联用仪测定.

    • 空白基质溶液氮吹至近干,分别加入1 mL浓度为0.010、0.020、0.050、0.100、0.200、0.400 mg·L−1的标准工作溶液复溶,过0.22 μm微孔滤膜配制成系列基质混合标准工作溶液,气相色谱-质谱联用仪测定.

    • 气相色谱条件 进样体积1.0 µL;进样方式:不分流进样;进样口温度280 ℃;流速1.6 mL·min−1;载气:高纯氦气(>99.999% );色谱柱:TG-5LPGC-MS(16 m×0.53 mmID×1 μm+5 m×0.18 mmID);程序升温条件:初始温度为65 ℃,保持0.5 min,以35 ℃升至320 ℃保持2 min;总运行时间为10 min.

      质谱条件 离子源: 电子轰击源(AEI);离子源电压: 50 eV;扫描方式: 正离子扫描;采集方式: 多反应监测(SRM);接口温度为280 ℃;离子源温度为320 ℃;碰撞气: 高纯氩气(>99. 999% ).

    • 在TSQ-9000气质联用仪上分别用质量浓度为0.05 mg·kg−1的混合对照农药对LPGC和TG-5MS色谱柱进行测试. 甲胺磷和溴氰菊酯的出峰时间在LPGC上为2.96 min和8.20 min,在TG-5MS色谱柱上为6.01 min和21.80 min. LPGC分析时间比TG-5MS色谱柱要快2—3倍. 溴氰菊酯在两根色谱柱上的峰形差异并不明显. 在TG-5MS上甲胺磷峰形不够尖锐对称,存在严重的拖尾现象. 在LPGC上甲胺磷峰形更窄、分布更对称,展宽和拖尾明显减少. 进一步考虑目标成分保留时间、采集时效等因素,最终选定色谱柱为LPGC.

    • 基质效应是农药残留检测中普遍存在的问题,具体有基质增强和基质抑制两种效应. 按照1.2.2小节前处理方法,制备黄瓜空白基质溶液. 分别用纯溶剂和空白基质溶液配制农药浓度相同的两种待测液,根据两者的响应值计算黄瓜的基质效应,$ M=\dfrac{{A}_{mi}-{A}_{si}}{{A}_{si}}\times 100\% $ . 其中,M为黄瓜基质溶液中各农药的基质效应;Ami为基质溶液中各农药的检测响应值;Asi为纯溶剂中各农药的检测响应值. 分别用丙酮与黄瓜空白基质溶液配制120种农药的待测液,在相同条件下进行检测. 最终结果为120种农药中有5%农药的M值为负值,表现为基质抑制效应;其余农药M值为正值,表现为基质增强效应. 其中有51%的农药0<M<20%,表现为弱基质效应,可无需进行校正;有42%的农药20%<M<50%,表现为中等强度的基质效应;2%的农药M>50%,表现为强基质效应,需要进行校正. 综上所述,在同种基质中不同农药的基质效应差别较大,为降低基质效应的干扰,提高定量结果的准确性,需要配制基质标准溶液对定量结果进行校正.

    • 120种农药的定量离子对、定性离子及碰撞能量见GB 23200.113-2018. 按照1.2.3节配制方法配制基质工作曲线,在上述仪器条件下进行测定. GC-MS /MS定量采用外标峰面积法,以农药峰面积(y)对其质量浓度(x,ng·mL−1)进行线性回归,得到相应农药的回归方程. 结果表明,120种农药在该方法中均有响应,在0.010—0.400 mg·L−1 浓度范围内时,相关系数R2均在0.995以上,线性关系良好. 方法中各农药的定量限(S/N=10)为 0.01 mg·kg−1(表1).

    • 分别对2倍定量限、4倍定量限和10倍定量限进行加标回收实验,按上述前处理方法和仪器条件进行准确度和精密度测试,每个浓度平行测定3次(n=3). 在黄瓜中添加质量浓度分别为 0.02、0.04、0.10 mg·kg−1的混合农药标品,3种添加水平下回收率分别为77.2%—109%、83.3%—115%、73.6%—112%;相对标准偏差分别为 0.338%—12.6%、0.0569%—10.4%、0.0560%—10.2%,表明该方法重复性好、数据准确可靠,符合农药残留的分析要求.

    • 选取黄瓜样品共计6份,分别用LPGC色谱柱和TG-5MS色谱柱的仪器方法,对其中的甲胺磷和溴氰菊酯的含量进行测定,结果见表2. 结果表明,LPGC的仪器方法和TG-5MS的仪器方法测定结果一致,无显著差异. 综上所述,选用LPGC色谱柱不仅可以缩短检测时间,也能保证样品结果的准确性,极大提高实验室的检测效率.

    • 采用QuEChERS技术为前处理方法,以LPGC为核心,在GC-MS /MS上对黄瓜中120种农药进行定量测定. 本方法能够做到10 min分析120项农药, LPGC利用质谱的真空加速分析从而实现相同程度的分离,提高3—4倍的分析效率. 适合大批量农产品中农药残留的快速筛查检测. 该方法为多种农药残留的例行监测、风险评估、食用农产品质量安全监管的快速处理等研究提供了一种高效、可靠的分析手段.

    参考文献 (3)

返回顶部

目录

/

返回文章
返回