-
六溴环十二烷(HBCDs)是一种广泛使用的添加型阻燃剂. HBCDs在我国主要用于保温建筑材料发泡聚苯乙烯(EPS)和挤塑聚苯乙烯(XPS)的阻燃. 由于HBCDs具有持久性有机污染物(POPs)的特征,联合国环境规划署(UNEP)在2013年将其列入《关于持久性有机污染物的斯德哥尔摩公约》,在全球范围内禁止其生产和使用. 2016年,我国环保部等部委联合发布公告[1],自2016年12月26日起,禁止HBCDs的生产、使用和进出口,用于建筑行业的EPS和XPS享有五年的豁免权,延长至2021年12月25日. 添加HBCDs的阻燃材料在整个生命周期内会不断释放HBCDs,进入环境介质,对人体健康造成不利影响[2-5]. HBCDs停止生产和使用后,已经生产和使用的含有HBCDs的保温板材、装饰材料、纺织材料等将会在相当长的时间内成为HBCDs的污染来源.
极地地区地处偏远、气候严寒,远离工业生产和人类活动,其环境中的POPs等污染物的来源相对单一. 在全球蒸馏效应的作用下,POPs从温暖的中低纬度地区经过长距离大气迁移(LRAT)[6-9],最后沉降、汇集在高纬度的南北极或青藏高原等寒冷地区. 温暖地区的海洋环境中的POPs也会随着洋流迁移到高纬度地区[10]. 未曾使用过POPs的极地地区的环境介质和生物体内发现了POPs[11-14],为这些理论提供了证据支持.
近些年来,极地地区陆续被人类以工业生产、科学研究、旅游考察等方式开发利用,人类足迹遍布南极、北极和青藏高原,人类活动对当地生态环境的影响也开始显现. 本文分析了南极菲尔德斯半岛(Fildes Peninsula)和阿德利岛(Ardley Island)的环境和生物样品中HBCDs的污染水平和空间分布,探讨了其可能的来源,旨在为POPs的长距离大气传输及人类活动对南极环境的影响提供证据.
六溴环十二烷(HBCDs)在南极菲尔德斯半岛和阿德利岛的分布
Distribution of hexabromocyclododecanes (HBCDs) in Fildes Peninsula and Ardley Island, Antarctica
-
摘要: 2016年,六溴环十二烷(HBCDs)开始在全球禁止使用后,用它加工生产的阻燃材料的释放可能是其重要的污染来源. 本文用液相色谱-三重四极杆串联质谱分析了南极菲尔德斯半岛和阿德利岛的环境和生物样品中的α-,β-,γ-HBCD. HBCDs在土壤、粪土(企鹅粪土层)和海洋沉积物中全部检出,浓度范围为7.10—792 pg·g−1 dw(干重)。其中,苔藓和地衣中的浓度范围为23.4—951 pg·g−1 dw,海草和褐藻中浓度范围为<LOD(检出限)—5977 pg·g−1 dw,水生动物样品浓度为<LOD—43.8 ng·g−1 lw(脂肪重). γ-HBCD的比例从环境样品到陆生植物、水生植物、水生动物样品逐渐递减. 水生动物样品中α-HBCD浓度与脂肪含量显著相关. 中国长城站附近的苔藓样品中HBCDs浓度较高,表明人类活动可能是HBCDs的重要来源.Abstract: The release from flame retardant materials containing hexabromocyclododecanes (HBCDs) may be the important sources since HBCDs have been phased out globally in 2016. In this study, α-, β-, γ-HBCD in the environment and biota samples from Fildes Peninsula and Ardley Island in Antarctica were investigated using a high performance liquid chromatography coupled to a triple quadrupole mass spectrometer (HPLC-MSMS). Total HBCD concentrations were in ranges of 7.10—792 pg·g−1 dw (dry weight) in soil, dropping-amended soil and sediment samples, 23.4—951 pg·g−1 dw in moss and lichen samples, <LOD—5977 pg·g−1 dw in sea grass and brown seaweed samples, and <LOD—43.8 ng·g−1 lw (lipid weight) in aquatic organism samples, respectively. A decreasing trend of γ-HBCD contribution was observed from environment samples to terrestrial vegetation samples, aquatic vegetation samples, and aquatic organism samples. The concentrations of α-HBCD in aquatic organism samples were significantly correlated with the lipid contents. High HBCD contamination was found in the moss sample collected from the site near the Chinese Great Wall Station, which indicated that anthropogenic activities might be the important in of HBCDs in the local environment.
-
Key words:
- HBCDs /
- Antarctica /
- soil /
- biota.
-
表 1 南极菲尔德斯半岛和阿德利岛采样信息和样品中HBCDs浓度
Table 1. The sampling details and concentrations of HBCDs in the samples from Fildes Peninsula and Ardley Island
编号
No.采样点
Sampling sites经纬度
Longitude and latitude样品类型
Species检出数/样品数
Detection number/Sample numberTOC/lw
/%α-HBCD β-HBCD γ-HBCD ƩHBCDs 回收率/%
RecoveryA1 灯塔 62°12'37"S
58°55'37"W土壤 1/1 7.11 n.d. n.d. 7.10 7.10 71 粪土 2/2 54.3 ± 2.30 58.9 ± 26.7 12.0 ± 2.30 98.4 ± 12.2 169 ± 16.8 54 ± 3 苔藓 2/2 2.44 ± 0.11 173 ± 245 31.0 ± 43.8 145 ± 60.5 349 ± 350 65 ± 13 地衣 1/1 1.45 n.d. n.d. 27.1 27.1 97 A2 阿德利岛 62º12'50"S
58º55'13"W粪土 1/1 34.0 29.6 n.d. 83.6 113 82 土壤 1/1 6.85 44.3 20.0 108 173 62 苔藓 1/1 2.43 188 77.0 142 407 83 A3 碧玉滩 62º13'48"S 土壤 1/1 0.48 n.d. n.d. 9.60 9.60 72 58º59'07"W 苔藓 1/1 2.71 92.5 n.d. 65.3 158 61 A4 八达岭 62º13'12"S 土壤 1/1 0.33 n.d. 11.3 51.0 62.3 65 58º57'48"W 苔藓 1/1 1.68 407 97.3 447 951 55 A5 月牙湖 62º12'45"S
58º56'26"W土壤 1/1 20.0 15.8 n.d. 27.1 42.9 62 苔藓 1/1 2.40 46.4 42.2 254 343 64 地衣 1/1 0.96 n.d. n.d. 36.9 36.9 71 A6 香蕉山 62º13'45"S 土壤 1/1 2.45 347 78.4 367 792 98 58º59'29"W 地衣 1/1 1.21 n.d. n.d. 23.4 23.4 91 A7 海豹湾 62º12'30"S
58º59'59"W土壤 1/1 0.40 n.d. n.d. 11.8 11.8 94 地衣 1/1 2.95 n.d. n.d. 30.7 30.7 57 苔藓 1/1 1.47 72.4 17.0 54.8 144 66 A8 半边山 62º12'19"S 地衣 1/1 2.01 61.0 9.90 34.9 106 68 58º57'17"W 苔藓 1/1 1.34 70.0 n.d. 53.0 123 93 A9 长城湾 62º12'35"S
58º57'24"W海洋沉积物 1/1 1.32 n.d. n.d. 41.0 41.0 53 海草 2/5 4.68 ± 1.64 549 ± 1229 154 ± 343 135 ± 246 838 ± 1814 92 ± 13 褐藻 5/7 0.49 ± 0.15 631 ± 897 250 ± 321 852 ± 1394 1732 ± 2277 85 ± 13 端足 3/5 3.41 ± 2.32 8.77 ± 19.6 4.36 ± 7.98 1.39 ± 3.12 14.5 ± 18.1 83 ± 11 南极蛤 1/2 2.24 ± 0.41 5.99 ± 8.48 1.89 ± 2.68 11.0 ± 15.6 18.9 ± 26.7 95 ± 18 海星 4/5 4.61 ± 2.11 9.26 ± 19.1 n.d. 5.72 ± 11.2 15.0 ± 18.9 82 ± 22 帽贝 9/10 13.5 ± 3.50 5.47 ± 4.96 n.d. 0.70 ± 1.63 6.17 ± 4.33 71 ± 15 鱼肉 3/8 8.17 ± 2.99 0.58 ± 1.63 0.56 ± 1.59 1.32 ± 2.14 2.46 ± 3.85 83 ± 5 鱼肝脏 1/1 5.88 8.75 n.d. 3.19 11.9 82 注:土壤、粪土、海洋沉积物、苔藓、地衣、海草、褐藻样品中HBCDs的浓度单位为pg·g−1 dw,其他样品浓度单位为ng·g−1 lw;样品数量>1的浓度数据和回收率数据为平均值±标准偏差(SD);ƩHBCDs为α-、β-、γ-HBCD浓度之和;n.d.,未检出.
Note: The unit of HBCD concentration was pg·g−1 dw in soil, dropping-amended soil, sediment moss, lichen, sea grass and brown seaweed samples, and ng·g−1 lw in other samples; Concentrations and recoveries were expressed as mean ± SD when the sample number>1; ƩHBCDs means the sum of α-、β- and γ-HBCD; n.d.,not detected.表 2 4类样品中HBCD异构体浓度与TOC/lw的Spearman相关性分析
Table 2. Spearman correlation analysis between the concentrations of HBCD isomers and TOC/lw in the four sample species
样品种类
Sample species变量
VariablesTOC/lw α-HBCD β-HBCD γ-HBCD ƩHBCDs 环境样品(n = 11) TOC/lw 1 0.60 0.09 0.35 0.41 α-HBCD 1 0.75** 0.87** 0.93** β-HBCD 1 0.84** 0.85** γ-HBCD 1 0.96** ƩHBCDs 1 陆生植物(n = 13) TOC/lw 1 0.18 0.14 0.37 0.31 α-HBCD 1 0.77** 0.71** 0.92** β-HBCD 1 0.74** 0.84** γ-HBCD 1 0.92** ƩHBCDs 1 水生植物(n = 7) TOC/lw 1 0.45 0.59 0.39 0.39 α-HBCD 1 0.82* 0.60 0.81* β-HBCD 1 0.82* 0.85* γ-HBCD 1 0.86* ƩHBCDs 1 水生动物(n = 21) TOC/lw 1 0.47* −0.53* −0.22 0.35 α-HBCD 1 −0.42 −0.66** 0.63** β-HBCD 1 0.30 −0.04 γ-HBCD 1 −0.18 ƩHBCDs 1 * 置信度(双测)为 0.05 时,显著相关;** 置信度(双测)为 0.01 时,显著相关.
* Significant correlation at the 0.05 level (two-tailed); **Significant correlation at the 0.01 level (two-tailed). -
[1] 环境保护部, 外交部, 国家发展和改革委员会等. 关于《<关于持久性有机污染物的斯德哥尔摩公约>新增列六溴环十二烷修正案》生效的公告 [EB/OL] .[2022-9-5]. https://www.mee.gov.cn/gkml/hbb/bgg/201612/t20161228_378327.htm. [2] COVACI A, GERECKE A C, LAW R J, et al. Hexabromocyclododecanes (HBCDs) in the environment and humans: A review [J]. Environmental Science & Technology, 2006, 40(12): 3679-3688. [3] MORRIS S, ALLCHIN C R, ZEGERS B N, et al. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs [J]. Environmental Science & Technology, 2004, 38(21): 5497-5504. [4] ABDALLAH M A E, HARRAD S. Modification and calibration of a passive air sampler for monitoring vapor and particulate phase brominated flame retardants in indoor air: Application to car interiors [J]. Environmental Science & Technology, 2010, 44(8): 3059-3065. [5] ABDALLAH M A E, HARRAD S, COVACI A. Hexabromocyclododecanes and tetrabromobisphenol-A in indoor air and dust in Birmingham, UK: Implications for human exposure [J]. Environmental Science & Technology, 2008, 42(18): 6855-6861. [6] MUIR D C G, BACKUS S, DEROCHER A E, et al. Brominated flame retardants in polar bears (Ursus maritimus) from Alaska, the Canadian Arctic, East Greenland, and Svalbard [J]. Environmental Science & Technology, 2006, 40(2): 449-455. [7] VERREAULT J, GEBBINK W A, GAUTHIER L T, et al. Brominated flame retardants in glaucous gulls from the Norwegian Arctic: More than just an issue of polybrominated diphenyl ethers [J]. Environmental Science & Technology, 2007, 41(14): 4925-4931. [8] MILJETEIG C, STRØM H, GAVRILO M V, et al. High levels of contaminants in Ivory gull Pagophila eburnea eggs from the Russian and Norwegian Arctic [J]. Environmental Science & Technology, 2009, 43(14): 5521-5528. [9] VORKAMP K, RIGÉT F F, BOSSI R, et al. Temporal trends of hexabromocyclododecane, polybrominated diphenyl ethers and polychlorinated biphenyls in ringed seals from East Greenland [J]. Environmental Science & Technology, 2011, 45(4): 1243-1249. [10] de WIT C A, HERZKE D, VORKAMP K. Brominated flame retardants in the Arctic environment—trends and new candidates [J]. Science of the Total Environment, 2010, 408(15): 2885-2918. doi: 10.1016/j.scitotenv.2009.08.037 [11] TOMY G T, PLESKACH K, OSWALD T, et al. Enantioselective bioaccumulation of hexabromocyclododecane and congener-specific accumulation of brominated diphenyl ethers in an eastern Canadian Arctic marine food web [J]. Environmental Science & Technology, 2008, 42(10): 3634-3639. [12] VORKAMP K, BOSSI R, RIGÉT F F, et al. Novel brominated flame retardants and dechlorane plus in Greenland air and biota [J]. Environmental Pollution, 2015, 196: 284-291. doi: 10.1016/j.envpol.2014.10.007 [13] ZHU N L, FU J J, GAO Y, et al. Hexabromocyclododecane in alpine fish from the Tibetan Plateau, China [J]. Environmental Pollution, 2013, 181: 7-13. doi: 10.1016/j.envpol.2013.05.050 [14] KIM J T, CHOI Y J, BARGHI M, et al. Occurrence and distribution of old and new halogenated flame retardants in mosses and lichens from the South Shetland Islands, Antarctica [J]. Environmental Pollution, 2018, 235: 302-311. doi: 10.1016/j.envpol.2017.12.080 [15] LI H H, ZHANG Q H, WANG P, et al. Levels and distribution of hexabromocyclododecane (HBCD) in environmental samples near manufacturing facilities in Laizhou Bay area, East China [J]. Journal of Environmental Monitoring, 2012, 14(10): 2591-2597. doi: 10.1039/c2em30231d [16] REMBERGER M, STERNBECK J, PALM A, et al. The environmental occurrence of hexabromocyclododecane in Sweden [J]. Chemosphere, 2004, 54(1): 9-21. doi: 10.1016/S0045-6535(03)00758-6 [17] JEON J W, KIM C S, KIM H J, et al. Spatial distribution, source identification, and anthropogenic effects of brominated flame retardants in nationwide soil collected from South Korea [J]. Environmental Pollution, 2021, 272: 116026. doi: 10.1016/j.envpol.2020.116026 [18] WU M H, HAN T, XU G, et al. Occurrence of Hexabromocyclododecane in soil and road dust from mixed-land-use areas of Shanghai, China, and its implications for human exposure [J]. Science of the Total Environment, 2016, 559: 282-290. doi: 10.1016/j.scitotenv.2016.03.166 [19] EGUCHI A, ISOBE T, RAMU K, et al. Soil contamination by brominated flame retardants in open waste dumping sites in Asian developing countries [J]. Chemosphere, 2013, 90(9): 2365-2371. doi: 10.1016/j.chemosphere.2012.10.027 [20] ZHU N L, SCHRAMM K W, WANG T, et al. Lichen, moss and soil in resolving the occurrence of semi-volatile organic compounds on the southeastern Tibetan Plateau, China [J]. Science of the Total Environment, 2015, 518/519: 328-336. doi: 10.1016/j.scitotenv.2015.03.024 [21] MENG X Z, DUAN Y P, YANG C, et al. Occurrence, sources, and inventory of hexabromocyclododecanes (HBCDs) in soils from Chongming Island, the Yangtze River Delta (YRD) [J]. Chemosphere, 2011, 82(5): 725-731. doi: 10.1016/j.chemosphere.2010.10.091 [22] 李红华, 商红涛, 王璞, 等. 四川省部分地区土壤中六溴环十二烷的分布特征 [J]. 环境化学, 2014, 33(9): 1439-1444. doi: 10.7524/j.issn.0254-6108.2014.09.013 LI H H, SHANG H T, WANG P, et al. Distribution of hexabromocyclododecane (HBCD) in surface soils from some regions of Sichuan Province in China [J]. Environmental Chemistry, 2014, 33(9): 1439-1444(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.09.013
[23] LU J F, HE M J, YANG Z H, et al. Occurrence of tetrabromobisphenol a (TBBPA) and hexabromocyclododecane (HBCD) in soil and road dust in Chongqing, Western China, with emphasis on diastereoisomer profiles, particle size distribution, and human exposure [J]. Environmental Pollution, 2018, 242: 219-228. doi: 10.1016/j.envpol.2018.06.087 [24] 张淑娟, 杨瑞强. 苔藓和地衣在指示偏远地区大气持久性有机污染物中的应用 [J]. 环境化学, 2014, 33(1): 37-45. doi: 10.7524/j.issn.0254-6108.2014.01.021 ZHANG S J, YANG R Q. Application of lichens and mosses as biomonitors of atmospheric POPs pollution in remote areas: A review [J]. Environmental Chemistry, 2014, 33(1): 37-45(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.01.021
[25] HARMENS H, FOAN L, SIMON V, et al. Terrestrial mosses as biomonitors of atmospheric POPs pollution: A review [J]. Environmental Pollution, 2013, 173: 245-254. doi: 10.1016/j.envpol.2012.10.005 [26] KIM J T, CHOI Y J, BARGHI M, et al. Occurrence, distribution, and bioaccumulation of new and legacy persistent organic pollutants in an ecosystem on King George Island, maritime Antarctica [J]. Journal of Hazardous Materials, 2021, 405: 124141. doi: 10.1016/j.jhazmat.2020.124141 [27] HAUKÅS M, HYLLAND K, NYGÅRD T, et al. Diastereomer-specific bioaccumulation of hexabromocyclododecane (HBCD) in a coastal food web, Western Norway [J]. Science of the Total Environment, 2010, 408(23): 5910-5916. doi: 10.1016/j.scitotenv.2010.08.026 [28] HAUKÅS M, HYLLAND K, BERGE J A, et al. Spatial diastereomer patterns of hexabromocyclododecane (HBCD) in a Norwegian fjord [J]. Science of the Total Environment, 2009, 407(22): 5907-5913. doi: 10.1016/j.scitotenv.2009.08.024 [29] UENO D, ISOBE T, RAMU K, et al. Spatial distribution of hexabromocyclododecanes (HBCDs), polybrominated diphenyl ethers (PBDEs) and organochlorines in bivalves from Japanese coastal waters [J]. Chemosphere, 2010, 78(10): 1213-1219. doi: 10.1016/j.chemosphere.2009.12.058 [30] JANÁK K, COVACI A, VOORSPOELS S, et al. Hexabromocyclododecane in marine species from the Western Scheldt Estuary: Diastereoisomer- and enantiomer-specific accumulation [J]. Environmental Science & Technology, 2005, 39(7): 1987-1994. [31] WU J P, GUAN Y T, ZHANG Y, et al. Trophodynamics of hexabromocyclododecanes and several other non-PBDE brominated flame retardants in a freshwater food web [J]. Environmental Science & Technology, 2010, 44(14): 5490-5495. [32] KÖPPEN R, BECKER R, ESSLINGER S, et al. Enantiomer-specific analysis of hexabromocyclododecane in fish from Etnefjorden (Norway) [J]. Chemosphere, 2010, 80(10): 1241-1245. doi: 10.1016/j.chemosphere.2010.06.019 [33] LAW R J, KOHLER M, HEEB N V, et al. Hexabromocyclododecane challenges scientists and regulators [J]. Environmental Science & Technology, 2005, 39(13): 281A-287A. [34] BRAUNE B M, MALLORY M L, GILCHRIST H G, et al. Levels and trends of organochlorines and brominated flame retardants in Ivory Gull eggs from the Canadian Arctic, 1976 to 2004 [J]. Science of the Total Environment, 2007, 378(3): 403-417. doi: 10.1016/j.scitotenv.2007.03.003 [35] LAW R J, BERSUDER P, ALLCHIN C R, et al. Levels of the flame retardants hexabromocyclododecane and tetrabromobisphenol A in the blubber of harbor porpoises (Phocoena phocoena) stranded or bycaught in the U.K., with evidence for an increase in HBCD concentrations in recent years [J]. Environmental Science & Technology, 2006, 40(7): 2177-2183. [36] STAPLETON H M, DODDER N G, KUCKLICK J R, et al. Determination of HBCD, PBDEs and MeO-BDEs in California Sea lions (Zalophus californianus) stranded between 1993 and 2003 [J]. Marine Pollution Bulletin, 2006, 52(5): 522-531. doi: 10.1016/j.marpolbul.2005.09.045 [37] JOHNSON-RESTREPO B, ADAMS D H, KANNAN K. Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States [J]. Chemosphere, 2008, 70(11): 1935-1944. doi: 10.1016/j.chemosphere.2007.10.002 [38] WANG P, ZHANG Q H, WANG T, et al. PCBs and PBDEs in environmental samples from King George Island and Ardley Island, Antarctica [J]. RSC Advances, 2012, 2(4): 1350-1355. doi: 10.1039/C1RA00462J [39] ZHANG Q H, CHEN Z J, LI Y M, et al. Occurrence of organochlorine pesticides in the environmental matrices from King George Island, west Antarctica [J]. Environmental Pollution, 2015, 206: 142-149. doi: 10.1016/j.envpol.2015.06.025 [40] YANG R Q, WANG Y W, LI A, et al. Organochlorine pesticides and PCBs in fish from lakes of the Tibetan Plateau and the implications [J]. Environmental Pollution, 2010, 158(6): 2310-2316. doi: 10.1016/j.envpol.2010.02.004 [41] CHEN D, HALE R C, la GUARDIA M J, et al. Hexabromocyclododecane flame retardant in Antarctica: Research stations as sources [J]. Environmental Pollution, 2015, 206: 611-618. doi: 10.1016/j.envpol.2015.08.024 [42] CORSOLINI S, METZDORFF A, BARONI D, et al. Legacy and novel flame retardants from indoor dust in Antarctica: Sources and human exposure [J]. Environmental Research, 2021, 196: 110344. doi: 10.1016/j.envres.2020.110344