工业过程二恶英的排放特征及其控制技术

王得梁, 谢雯静, 赵文博, 何钰晴, 徐菁, 黄亚妮, 郝艳芬, 梁勇, 王璞. 工业过程二恶英的排放特征及其控制技术[J]. 环境化学, 2023, 42(5): 1449-1465. doi: 10.7524/j.issn.0254-6108.2022070704
引用本文: 王得梁, 谢雯静, 赵文博, 何钰晴, 徐菁, 黄亚妮, 郝艳芬, 梁勇, 王璞. 工业过程二恶英的排放特征及其控制技术[J]. 环境化学, 2023, 42(5): 1449-1465. doi: 10.7524/j.issn.0254-6108.2022070704
WANG Deliang, XIE Wenjing, ZHAO Wenbo, HE Yuqing, XU Jing, HUANG Yani, HAO Yanfen, LIANG Yong, WANG Pu. Dioxin emission characteristics and control technologies in industrial processes[J]. Environmental Chemistry, 2023, 42(5): 1449-1465. doi: 10.7524/j.issn.0254-6108.2022070704
Citation: WANG Deliang, XIE Wenjing, ZHAO Wenbo, HE Yuqing, XU Jing, HUANG Yani, HAO Yanfen, LIANG Yong, WANG Pu. Dioxin emission characteristics and control technologies in industrial processes[J]. Environmental Chemistry, 2023, 42(5): 1449-1465. doi: 10.7524/j.issn.0254-6108.2022070704

工业过程二恶英的排放特征及其控制技术

    通讯作者: Tel:13466359131,E-mail:puwang@jhun.edu.cn
  • 基金项目:
    江汉大学省部共建精细爆破国家重点实验室自主研究课题(PBSKL2022103)和国家自然科学基金(41977327)资助.

Dioxin emission characteristics and control technologies in industrial processes

    Corresponding author: WANG Pu, puwang@jhun.edu.cn
  • Fund Project: the State Key Laboratory of Precision Blasting, Jianghan University (PBSKL2022103) and National Natural Science Foundation of China(41977327).
  • 摘要: 工业排放是环境中二恶英(PCDD/Fs)最主要的人为排放源. 2010年我国九部委联合发布PCDD/Fs污染防治指导意见,之后出台多项政策要求对主要行业持久性有机污染物(POPs)开展污染防治. 在一系列防治措施下,PCDD/Fs的工业排放水平有所下降,整体取得良好成效. 本文针对固体废弃物焚烧、钢铁生产、有色金属生产和水泥窑协同处置四类主要行业的PCDD/Fs排放研究进展进行综述,阐述了不同行业PCDD/Fs排放量、排放特征及其变化趋势,比较分析了目前四类主要行业针对PCDD/Fs排放的控制技术及其效果,并对烟气中PCDD/Fs污染控制技术的发展方向进行了展望. 本文可为更加深入地了解工业排放PCDD/Fs的研究现状以及污染控制技术提供参考.
  • 加载中
  • 图 1  四类工业大气PCDD/Fs排放量示意图[3-4,30,35,61,63-65]

    Figure 1.  Atmosphere PCDD/Fs emission form four types of industrial [3-4,30,35,61,63-65]

    表 1  我国PCDD/Fs的主要排放源及其排放量

    Table 1.  Main emission sources of dioxins and their emissions in China

    排放源
    Emission source
    排放因子/(ng·t−1 I-TEQ)
    Emission factor
    年排放量/(g TEQ)
    Annual emission
    参考文献
    References
    大气Atmosphere总量Total
    固体废弃物焚烧生活垃圾125.8338[3]
    危险废物57.27243.27
    医疗废物427.41176.3
    总计(2004)610.471757.57
    生活垃圾1728[24]
    27—225[25]
    12200217[23]
    56—607[60]
    危险废物70—3270[60]
    工业废物302500103[23]
    医疗废物97800272[23]
    780—473930[26]
    1923.60.466[20]
    总计(2013)1280[61]
    总计(2016)2469[4]
    钢铁生产铁矿石烧结1522.51523.4[3]
    钢铁冶炼150.91125.4
    铸铁生产10.797
    炼焦239.2252.6
    总计(2004)1923.312998.4
    铁矿石烧结1582.95[30]
    772.2—827.9[37]
    1330—7610[38]
    180±220[36]
    电弧炉1245.85[30]
    270±23[36]
    3160[37]
    177—869[38]
    炼焦160.09[30]
    28.9(WHO)[62]
    总计(2011)6817[63]
    总计(2012)618[64]
    总计(2015)1216.83[35]
    总计(2016)5333[4]
    总计(2018)2240[30]
    有色金属生产铜生产4031133.8[3]
    铝生产133.5365.5
    铅生产13.417.4
    其他12.9951.85
    总计(2004)562.891568.55
    铜生产38.5、651(WHO)[49]
    14.2[50]
    铝生产1240.2
    铅生产3140.0
    锌生产166.0
    再生铜241719—1707200[37]
    1480237.5[65-66]
    24451.3[50]
    再生铝147819—434840[37]
    84.8—2720[38]
    再生铅4297[37]
    镁生产412(WHO)[49]
    废旧导线回收5569(WHO)[49]
    水泥窑协同处置水泥窑(2004)365.3365.3[3]
    水泥窑50000.02g[57-58]
    水泥窑0.01—1.35 mg[55]
    上述四类总计(2004)3461.976437.22[3]
    所有污染源总计(2004)5042.410236.8[3]
      注:“—”:表示未提及;其他:包锌、黄铜和青铜、镁等未提及的有色金属生产;
    排放源
    Emission source
    排放因子/(ng·t−1 I-TEQ)
    Emission factor
    年排放量/(g TEQ)
    Annual emission
    参考文献
    References
    大气Atmosphere总量Total
    固体废弃物焚烧生活垃圾125.8338[3]
    危险废物57.27243.27
    医疗废物427.41176.3
    总计(2004)610.471757.57
    生活垃圾1728[24]
    27—225[25]
    12200217[23]
    56—607[60]
    危险废物70—3270[60]
    工业废物302500103[23]
    医疗废物97800272[23]
    780—473930[26]
    1923.60.466[20]
    总计(2013)1280[61]
    总计(2016)2469[4]
    钢铁生产铁矿石烧结1522.51523.4[3]
    钢铁冶炼150.91125.4
    铸铁生产10.797
    炼焦239.2252.6
    总计(2004)1923.312998.4
    铁矿石烧结1582.95[30]
    772.2—827.9[37]
    1330—7610[38]
    180±220[36]
    电弧炉1245.85[30]
    270±23[36]
    3160[37]
    177—869[38]
    炼焦160.09[30]
    28.9(WHO)[62]
    总计(2011)6817[63]
    总计(2012)618[64]
    总计(2015)1216.83[35]
    总计(2016)5333[4]
    总计(2018)2240[30]
    有色金属生产铜生产4031133.8[3]
    铝生产133.5365.5
    铅生产13.417.4
    其他12.9951.85
    总计(2004)562.891568.55
    铜生产38.5、651(WHO)[49]
    14.2[50]
    铝生产1240.2
    铅生产3140.0
    锌生产166.0
    再生铜241719—1707200[37]
    1480237.5[65-66]
    24451.3[50]
    再生铝147819—434840[37]
    84.8—2720[38]
    再生铅4297[37]
    镁生产412(WHO)[49]
    废旧导线回收5569(WHO)[49]
    水泥窑协同处置水泥窑(2004)365.3365.3[3]
    水泥窑50000.02g[57-58]
    水泥窑0.01—1.35 mg[55]
    上述四类总计(2004)3461.976437.22[3]
    所有污染源总计(2004)5042.410236.8[3]
      注:“—”:表示未提及;其他:包锌、黄铜和青铜、镁等未提及的有色金属生产;
    下载: 导出CSV

    表 2  PCDD/Fs的全过程控制方法

    Table 2.  Whole process control method of PCDD/Fs

    过程
    Process
    方法
    Method
    参考文献
    References
    生成前物料预处理、添加辅助燃料、配制垃圾衍生燃料等[69-70]
    生成中改进炉膛结构、调整工作参数(含氧量、气体湍流度、温度区间及停留时间、多段燃烧等)、含硫含氮抑制剂(硫脲、氨、含硫煤等)、烟气循环、烟气急冷等[69, 71-74]
    生成后活性炭吸附、除尘器拦截(袋式、静电等除尘器等)、选择性催化还原、光降解、等离子体降解、高级氧化等[72, 75-80]
    过程
    Process
    方法
    Method
    参考文献
    References
    生成前物料预处理、添加辅助燃料、配制垃圾衍生燃料等[69-70]
    生成中改进炉膛结构、调整工作参数(含氧量、气体湍流度、温度区间及停留时间、多段燃烧等)、含硫含氮抑制剂(硫脲、氨、含硫煤等)、烟气循环、烟气急冷等[69, 71-74]
    生成后活性炭吸附、除尘器拦截(袋式、静电等除尘器等)、选择性催化还原、光降解、等离子体降解、高级氧化等[72, 75-80]
    下载: 导出CSV

    表 3  不同行业烟气PCDD/Fs排放控制标准

    Table 3.  PCDD/Fs emission control standard for different industries

    行业
    Industry
    限值/(ng·m−3 TEQ)
    Limiting value
    开始时间
    Time
    参考文献
    References
    生活垃圾焚烧0.12014[82]
    危险废物焚烧0.52001[83]
    火葬场0.52015[84]
    炼钢工业(电炉、烧结、球团)0.52012[85-86]
    再生铜、铝、铅、锌0.52015[87]
    水泥窑协同处置固体废物0.12013[88]
    行业
    Industry
    限值/(ng·m−3 TEQ)
    Limiting value
    开始时间
    Time
    参考文献
    References
    生活垃圾焚烧0.12014[82]
    危险废物焚烧0.52001[83]
    火葬场0.52015[84]
    炼钢工业(电炉、烧结、球团)0.52012[85-86]
    再生铜、铝、铅、锌0.52015[87]
    水泥窑协同处置固体废物0.12013[88]
    下载: 导出CSV

    表 4  工业烟气PCDD/Fs控制技术

    Table 4.  Collaborative dioxin control technology for industrial flue gas

    工业类型
    Industrial Type
    空气污染控制装置
    Air pollution control devices(APCDs)
    进口
    Before
    出口
    After
    效率
    Efficiency
    参考文献
    Reference
    固体废弃物焚烧生活垃圾焚烧SDS+DS+AC+BF+SCR0.22530.002898.76%[89]
    SNCR+SDS+AC+BF0.0365[98]
    0.076—0.153[107]
    0.007—0.095[25]
    SDS+AC+BF+SCR0.41[108]
    0.06[108]
    热交换+SDS+AC+BF2.580.024699%[109]
    急冷+SDS+AC+BF0.45[94]
    SDS+AC+BF0.078[110]
    0.008—0.1291.7%—99.3%[93]
    0.026[94]
    0.099[98]
    DS+AC+BF0.0844[38]
    WDS+AC+BF0.082[98]
    AC+BF0.239[38]
    CY+SDS+BF0.54[111]
    WDS+BF0.50[94]
    SDS+BF1.33[94]
    CY+ESP16.1370.94694.14%[112]
    CY+ESP+BF0.231.948-747%[112]
    0.4365.018-1051%[112]
    危险废物焚烧VS+CY+AC+BF1130.054(WHO)99.95%[90]
    SDS+AC+BF0.01—11.91[92]
    AC+BF0.225[38]
    医疗废弃物焚烧SDS+AC+BF+WDS5.320.0798.68%[91]
    DS+AC+BF1.64[38]
    SDS+AC+BF0.07—12.21[92]
    SDS+BF0.07
    钢铁生产电弧炉炼钢BF0.17[113]
    0.148—0.757[38]
    0.34[37]
    ESP+脱硫0.003—0.557[36]
    烧结ESP+WFGD2.3±0.560.99±0.53[99]
    ESP+SFGD0.32—0.690.022—0.2[99]
    WFGD+WESP0.15[103]
    钢铁生产烧结ESP+SCR0.137—0.657[38]
    ESP0.233[38]
    0.005—0.48[37]
    BF0.006—0.057[36]
    炼焦BF(4.9—89.3)×10−3 (WHO)[33]
    0.00870[38]
    (0.0039—0.03)×10−3[114]
    有色金属生产再生铜BF0.310[38]
    0.84[115]
    0.004—0.37[46]
    0.009—1.29[47]
    再生锌GS或ESP+BF0.48[103, 115]
    再生铅BF
    ESP+GS+BF
    0.05
    BF+WDS+DS0.037[37]
    再生铝AC+BF0.1[45]
    BF(5.68—44)×10−3[38]
    2.05[37]
    WDS0.88[37]
    水泥窑水泥窑协同处置ESP5.9×10−3[115103]
    (9.3—49.3)×10−3[116]
    0.01—0.19[55]
    BF0.076[106]
    (17.8—90.8) ×10−3[116]
    0.01—0.46[55]
    WDS0.04[55]
      单位:ng·m−3 I-TEQ:“—”:未提及;WDS:湿法除尘器;CY:旋风除尘器;VS:文丘里洗涤器;WFGD:湿法脱硫;SFGD:半干法脱硫;WESP:湿法静电除尘;GS:重力沉降
      unit:ng·m−3 I-TEQ;“—”:Not Reported;WDS:Wet dust collector;CY:Cyclone dust collector;VS:Venturi scrubber;WFGD:Wet flue gas desulfurization;SFGD:Semi-dry desulphurization;WESP:Wet electrostatic precipitator;GS:Gravity settling
    工业类型
    Industrial Type
    空气污染控制装置
    Air pollution control devices(APCDs)
    进口
    Before
    出口
    After
    效率
    Efficiency
    参考文献
    Reference
    固体废弃物焚烧生活垃圾焚烧SDS+DS+AC+BF+SCR0.22530.002898.76%[89]
    SNCR+SDS+AC+BF0.0365[98]
    0.076—0.153[107]
    0.007—0.095[25]
    SDS+AC+BF+SCR0.41[108]
    0.06[108]
    热交换+SDS+AC+BF2.580.024699%[109]
    急冷+SDS+AC+BF0.45[94]
    SDS+AC+BF0.078[110]
    0.008—0.1291.7%—99.3%[93]
    0.026[94]
    0.099[98]
    DS+AC+BF0.0844[38]
    WDS+AC+BF0.082[98]
    AC+BF0.239[38]
    CY+SDS+BF0.54[111]
    WDS+BF0.50[94]
    SDS+BF1.33[94]
    CY+ESP16.1370.94694.14%[112]
    CY+ESP+BF0.231.948-747%[112]
    0.4365.018-1051%[112]
    危险废物焚烧VS+CY+AC+BF1130.054(WHO)99.95%[90]
    SDS+AC+BF0.01—11.91[92]
    AC+BF0.225[38]
    医疗废弃物焚烧SDS+AC+BF+WDS5.320.0798.68%[91]
    DS+AC+BF1.64[38]
    SDS+AC+BF0.07—12.21[92]
    SDS+BF0.07
    钢铁生产电弧炉炼钢BF0.17[113]
    0.148—0.757[38]
    0.34[37]
    ESP+脱硫0.003—0.557[36]
    烧结ESP+WFGD2.3±0.560.99±0.53[99]
    ESP+SFGD0.32—0.690.022—0.2[99]
    WFGD+WESP0.15[103]
    钢铁生产烧结ESP+SCR0.137—0.657[38]
    ESP0.233[38]
    0.005—0.48[37]
    BF0.006—0.057[36]
    炼焦BF(4.9—89.3)×10−3 (WHO)[33]
    0.00870[38]
    (0.0039—0.03)×10−3[114]
    有色金属生产再生铜BF0.310[38]
    0.84[115]
    0.004—0.37[46]
    0.009—1.29[47]
    再生锌GS或ESP+BF0.48[103, 115]
    再生铅BF
    ESP+GS+BF
    0.05
    BF+WDS+DS0.037[37]
    再生铝AC+BF0.1[45]
    BF(5.68—44)×10−3[38]
    2.05[37]
    WDS0.88[37]
    水泥窑水泥窑协同处置ESP5.9×10−3[115103]
    (9.3—49.3)×10−3[116]
    0.01—0.19[55]
    BF0.076[106]
    (17.8—90.8) ×10−3[116]
    0.01—0.46[55]
    WDS0.04[55]
      单位:ng·m−3 I-TEQ:“—”:未提及;WDS:湿法除尘器;CY:旋风除尘器;VS:文丘里洗涤器;WFGD:湿法脱硫;SFGD:半干法脱硫;WESP:湿法静电除尘;GS:重力沉降
      unit:ng·m−3 I-TEQ;“—”:Not Reported;WDS:Wet dust collector;CY:Cyclone dust collector;VS:Venturi scrubber;WFGD:Wet flue gas desulfurization;SFGD:Semi-dry desulphurization;WESP:Wet electrostatic precipitator;GS:Gravity settling
    下载: 导出CSV
  • [1] FIEDLER H. Sources of PCDD/PCDF and impact on the environment [J]. Chemosphere, 1996, 32(1): 55-64. doi: 10.1016/0045-6535(95)00228-6
    [2] GUL N, KHAN B, KHAN H, et al. Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in municipal waste dumping site, incinerator and brick kiln residues: evaluation for potential risk assessment [J]. Arabian Journal of Geosciences, 2021, 14(9): 1-10.
    [3] 郑明辉, 孙阳昭, 刘文彬. 中国二噁英类持久性有机污染物排放清单研究[M]. 北京: 中国环境科学出版社, 2008:9-30.

    ZHENG M H, SUN Y Z, LIU W B. Mission inventory of dioxin persistent organic pollutants in China[M]. Beijing: China Environmental Science Press, 2008:9-30(in Chinese).

    [4] 陈露露, 黄韬, 陈凯杰, 等. 我国PCDD/Fs网格化大气排放清单[J]. 环境科学, 2020, 41(2): 510-519.

    CHEN L L, HUANG T, CHEN K J, et al. Gridded atmospheric emission inventory of PCDD/Fs in China(in Chinese).

    [5] HUANG Y, CHEN Y, LI Y, et al. Atmospheric emissions of PCDDs and PCDFs in China from 1960 to 2014[J]. Journal of Hazardous Materials, 2022, 424(Pt A): 127320.
    [6] 中华人民共和国国家统计局. 中国统计年鉴-2021[M]. 北京: 中国统计出版社, 2021.

    National Bureau of Statistics, PRC. China Statistical Yearbook, 2021[M]. Beijing: China Statistics Press, 2021(in Chinese).

    [7] 刘国瑞, 郑明辉, 孙轶斐, 等. 工业过程中持久性有机污染物排放特征[M]. 北京: 科学出版社, 2018:1.

    LIU G R, ZHENG M H, SUN Y F, et al. Emission characteristics of persistent organic pollutants from industrial processes[M]. Beijing: Science press, 2018:1(in Chinese).

    [8] TIAN B, HUANG J, WANG B, et al. Emission characterization of unintentionally produced persistent organic pollutants from iron ore sintering process in China [J]. Chemosphere, 2012, 89(4): 409-415. doi: 10.1016/j.chemosphere.2012.05.069
    [9] YANG L L, ZHAO Y Y, SHI M W, et al. Brominated dioxins and furans in a cement kiln co-processing municipal solid waste [J]. Journal of Environmental Sciences, 2019, 79: 339-345. doi: 10.1016/j.jes.2018.12.009
    [10] YANG Y P, YANG L L, WANG M X, et al. Concentrations and profiles of persistent organic pollutants unintentionally produced by secondary nonferrous metal smelters: Updated emission factors and diagnostic ratios for identifying sources [J]. Chemosphere, 2020, 255: 126958. doi: 10.1016/j.chemosphere.2020.126958
    [11] UNEP. The Stockholm Convention on Persistent Organic Pollutants. Geneva, Switzerland[M]. United Nations Environmental Programme, 2013.
    [12] XHROUET C, de PAUW E. Formation of PCDD/Fs in the sintering process: Influence of the raw materials [J]. Environmental Science & Technology, 2004, 38(15): 4222-4226.
    [13] HUANG H, BUEKENS A. On the mechanisms of dioxin formation in combustion processes [J]. Chemosphere, 1995, 31(9): 4099-4117. doi: 10.1016/0045-6535(95)80011-9
    [14] LI H M, ZHANG N, GUO X, et al. Summary of flue gas purification and treatment technology for domestic waste incineration [J]. IOP Conference Series:Earth and Environmental Science, 2020, 508(1): 012016. doi: 10.1088/1755-1315/508/1/012016
    [15] MAGUHN J, KARG E, KETTRUP A, et al. On-line analysis of the size distribution of fine and ultrafine aerosol particles in flue and stack gas of a municipal waste incineration plant: Effects of dynamic process control measures and emission reduction devices [J]. Environmental Science & Technology, 2003, 37(20): 4761-4770.
    [16] NIU Y Q, WEN L P, GUO X, et al. Co-disposal and reutilization of municipal solid waste and its hazardous incineration fly ash [J]. Environment International, 2022, 166: 107346. doi: 10.1016/j.envint.2022.107346
    [17] HAN Y, LIU W B, LI H F, et al. Gas-particle partitioning of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in flue gases from municipal solid waste incinerators [J]. Aerosol and Air Quality Research, 2017, 17(11): 2847-2857. doi: 10.4209/aaqr.2017.09.0308
    [18] 竹涛, 种旭阳, 王若男, 等. 生活垃圾焚烧飞灰处理技术研究进展 [J]. 洁净煤技术, 2022, 28(7): 189-201. doi: 10.13226/j.issn.1006-6772.21080202

    ZHU T, CHONG X Y, WANG R N, et al. Research progress on the treatment technology of municipal solid waste incineration fly ash [J]. Clean Coal Technology, 2022, 28(7): 189-201(in Chinese). doi: 10.13226/j.issn.1006-6772.21080202

    [19] 中华人民共和国国家统计局. 中国统计年鉴-2011[M]. 北京: 中国统计出版社, 2011.

    National Bureau of Statistics, PRC. China Statistical Yearbook, 2011[M]. Beijing: China Statistics Press, 2011(in Chinese).

    [20] LI J F, LV Z W, DU L, et al. Emission characteristic of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) from medical waste incinerators (MWIs) in China in 2016: A comparison between higher emission levels of MWIs and lower emission levels of MWIs [J]. Environmental Pollution, 2017, 221: 437-444. doi: 10.1016/j.envpol.2016.12.009
    [21] WANG L, LEE W, LEE W, et al. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxinsydibenzofurans [J]. The Science of the Total Environment, 2003, 302: 185-198. doi: 10.1016/S0048-9697(02)00306-6
    [22] ZHU J X, HIRAI Y, YU G, et al. Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in China and chemometric analysis of potential emission sources [J]. Chemosphere, 2008, 70(4): 703-711. doi: 10.1016/j.chemosphere.2007.06.053
    [23] LI C, YANG L L, LIU X Y, et al. Bridging the energy benefit and POPs emission risk from waste incineration [J]. The Innovation, 2021, 2(1): 100075. doi: 10.1016/j.xinn.2020.100075
    [24] NI Y W, ZHANG H J, FAN S, et al. Emissions of PCDD/Fs from municipal solid waste incinerators in China [J]. Chemosphere, 2009, 75(9): 1153-1158. doi: 10.1016/j.chemosphere.2009.02.051
    [25] ZHU F, LI X F, LU J W, et al. Emission characteristics of PCDD/Fs in stack gas from municipal solid waste incineration plants in Northern China [J]. Chemosphere, 2018, 200: 23-29. doi: 10.1016/j.chemosphere.2018.02.092
    [26] GAO H C, NI Y W, ZHANG H J, et al. Stack gas emissions of PCDD/Fs from hospital waste incinerators in China [J]. Chemosphere, 2009, 77(5): 634-639. doi: 10.1016/j.chemosphere.2009.08.017
    [27] 李凡. 我国医疗废物管理法律制度探析[D]. 兰州: 西北民族大学, 2022:2.

    LI F. On the legal system of medical waste management in China[D]. Lanzhou: Northwest Minzu University, 2022:2(in Chinese).

    [28] 王艳, 张俊林, 周丽. 新冠肺炎疫情环境下医疗废物的信息化储运策略 [J]. 环境工程, 2021, 39(4): 134-139. doi: 10.13205/j.hjgc.202104021

    WANG Y, ZHANG J L, ZHOU L. Strategy of information storage and transportation of medical waste in epidemic situation [J]. Environmental Engineering, 2021, 39(4): 134-139(in Chinese). doi: 10.13205/j.hjgc.202104021

    [29] 孙文强. 钢铁制造流程中物质流与能量流优化及其协同运行基础研究[D]. 沈阳: 东北大学, 2013:1.

    SUN W Q. Fundamental research on optimization and synergy of material flow and energy flow in steel manufacturing process[D]. Shenyang: Northeastern University, 2013:1(in Chinese).

    [30] 汤铃, 贾敏, 伯鑫, 等. 中国钢铁行业排放清单及大气环境影响研究 [J]. 中国环境科学, 2020, 40(4): 1493-1506. doi: 10.3969/j.issn.1000-6923.2020.04.014

    TANG L, JIA M, BO X, et al. High resolution emission inventory and atmospheric environmental impact research in Chinese iron and steel industry [J]. China Environmental Science, 2020, 40(4): 1493-1506(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.04.014

    [31] SHEN J, YANG L L, LIU G R, et al. Occurrence, profiles, and control of unintentional POPs in the steelmaking industry: A review [J]. Science of the Total Environment, 2021, 773: 145692. doi: 10.1016/j.scitotenv.2021.145692
    [32] 杨秋婷. 电弧炉炼钢过程中氯代和溴代二恶英的排放特征研究[D]. 北京: 钢铁研究总院, 2021:4.

    YANG Q T. Study on emission profile of PCDD/fs and PBDD/fs in the electric arc furnace steelmaking process[D]. Beijing: General Iron and Steel Research Institute, 2021:4(in Chinese).

    [33] LIU G R, ZHENG M H, LIU W B, et al. Atmospheric emission of PCDD/Fs, PCBs, hexachlorobenzene, and pentachlorobenzene from the coking industry [J]. Environmental Science & Technology, 2009, 43(24): 9196-9201.
    [34] YANG Q T, YANG L L, SHEN X J, et al. Organic pollutants from electric arc furnaces in steelmaking: A review [J]. Environmental Chemistry Letters, 2021, 19(2): 1509-1523. doi: 10.1007/s10311-020-01128-0
    [35] GAO C K, GAO W G, SONG K H, et al. Spatial and temporal dynamics of air-pollutant emission inventory of steel industry in China: A bottom-up approach [J]. Resources, Conservation and Recycling, 2019, 143: 184-200. doi: 10.1016/j.resconrec.2018.12.032
    [36] 杨艳艳, 谢丹平, 付建平, 等. 钢铁生产行业二噁污染特征变化及其排放因子 [J]. 环境科学, 2022, 43(8): 3990-3997.

    YANG Y Y, XIE D P, FU J P, et al. Pollution characteristics and emission factors of PCDD/fs from iron and steel industry [J]. Environmental Science, 2022, 43(8): 3990-3997(in Chinese).

    [37] ZOU C, HAN J L, FU H Q. Emissions of PCDD/Fs from steel and secondary nonferrous productions [J]. Procedia Environmental Sciences, 2012, 16: 279-288. doi: 10.1016/j.proenv.2012.10.039
    [38] WANG J B, HUNG C H, HUNG C H, et al. Polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from an industrial park clustered with metallurgical industries [J]. Journal of Hazardous Materials, 2009, 161(2/3): 800-807.
    [39] 阿不力克木·亚森. 八钢高炉入炉原料的冶金性能及配料优化研究[D]. 西安: 西安建筑科技大学, 2004:1-26.

    Yasen A. Research on metallurgical performance of blast furnace burden in bayi iron and steel company[D]. Xi'an: Xi'an University of Architecture and Technology, 2004:1-26(in Chinese).

    [40] 朱苗勇. 现代冶金工艺学-钢铁冶金卷[M]. 2版. 北京: 冶金工业出版社, 2016:108.

    ZHU M Y. Modern Metallurgical Technology -- Iron and Steel Metallurgy Volume (2nd edition)[M]. Beijing: Metallurgical Industry Press, 2016:108(in Chinese).

    [41] 李小克. 铁矿粉价铁比与铁水成本的统计关系 [J]. 金属材料与冶金工程, 2013, 41(5): 31-34. doi: 10.3969/j.issn.1005-6084.2013.05.007

    LI X K. The statistic relationship between the price-iron ratios of iron ore powder and the molten iron cost [J]. Metal Materials and Metallurgy Engineering, 2013, 41(5): 31-34(in Chinese). doi: 10.3969/j.issn.1005-6084.2013.05.007

    [42] LI H F, LIU W B, TANG C, et al. Emissions of 2, 3, 7, 8-substituted and non-2, 3, 7, 8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans from secondary aluminum smelters [J]. Chemosphere, 2019, 215: 92-100. doi: 10.1016/j.chemosphere.2018.10.004
    [43] 孟聪, 岳波, 孟棒棒, 等. 进口再生铜冶炼烟气中二噁英的生成特性 [J]. 环境化学, 2021, 40(8): 2462-2472. doi: 10.7524/j.issn.0254-6108.2020122502

    MENG C, YUE B, MENG B B, et al. Formation characteristics of PCDD/Fs in imported secondary copper smelting flue gas [J]. Environmental Chemistry, 2021, 40(8): 2462-2472(in Chinese). doi: 10.7524/j.issn.0254-6108.2020122502

    [44] 李家玲, 张正洁. 再生铝生产过程中二噁英成因及全过程污染控制技术 [J]. 环境保护科学, 2013, 39(2): 42-46. doi: 10.3969/j.issn.1004-6216.2013.02.011

    LI J L, ZHANG Z J. Causes of dioxin generation during secondary aluminum production process and the whole process pollution control technology [J]. Environmental Protection Science, 2013, 39(2): 42-46(in Chinese). doi: 10.3969/j.issn.1004-6216.2013.02.011

    [45] COLLINA E, BORTOLAMI M, FRANZONI F, et al. PCDD/F and dioxin-like PCB minimization: A 13-year experimental study along the flue gas cleaning system of a secondary aluminium refining plant [J]. Chemosphere, 2017, 181: 409-417. doi: 10.1016/j.chemosphere.2017.04.097
    [46] LI H F, LIU W B, TANG C, et al. Emission profiles and formation pathways of 2, 3, 7, 8-substituted and non-2, 3, 7, 8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans in secondary copper smelters [J]. The Science of the Total Environment, 2019, 649: 473-481. doi: 10.1016/j.scitotenv.2018.08.279
    [47] HU J C, ZHENG M H, NIE Z Q, et al. Polychlorinated dibenzo-p-dioxin and dibenzofuran and polychlorinated biphenyl emissions from different smelting stages in secondary copper metallurgy [J]. Chemosphere, 2013, 90(1): 89-94. doi: 10.1016/j.chemosphere.2012.08.003
    [48] NIE Z Q, ZHENG M H, LIU W B, et al. Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz and PeCBz emissions from magnesium metallurgy facilities in China [J]. Chemosphere, 2011, 85(11): 1707-1712. doi: 10.1016/j.chemosphere.2011.09.016
    [49] 聂志强. 有色金属冶炼过程中UP-POPs的生成与排放研究[D]. 北京: 中国科学院大学, 2012:91.
    NIE Z Q.Formation and emission of UP-POPS during smelting processes in nonferrous metallurgical facilites[D].Beijing:Chinese academy of sciences,2012:91(in Chinese).
    [50] YU B W, JIN G Z, MOON Y H, et al. Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea [J]. Chemosphere, 2006, 62(3): 494-501. doi: 10.1016/j.chemosphere.2005.04.031
    [51] 中华人民共和国国家统计局. 中国统计年鉴-2005[M]. 北京: 中国统计出版社, 2005.

    National Bureau of Statistics, PRC. China Statistical Yearbook, 2005[M]. Beijing: China Statistics Press, 2005(in Chinese).

    [52] 嵇鹰, 蒲奋飞, 刘博鑫, 等. 水泥窑协同处置含锌粉尘对水泥熟料性能及环境安全性的影响 [J]. 环境工程学报, 2022, 16(3): 946-953.

    JI Y, PU F F, LIU B X, et al. Effect of cement kiln co-processing of Zinc-containing powders on clinker performance and leaching [J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 946-953(in Chinese).

    [53] LIU G R, ZHAN J Y, ZHENG M H, et al. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations [J]. Journal of Hazardous Materials, 2015, 299: 471-478. doi: 10.1016/j.jhazmat.2015.07.052
    [54] YE W W, CAI P T, ZHAN M X, et al. Dioxin emission and distribution from cement kiln co-processing of hazardous solid waste [J]. Environmental Science and Pollution Research International, 2022, 29(35): 53755-53767. doi: 10.1007/s11356-022-19675-0
    [55] ZOU L L, NI Y W, GAO Y, et al. Spatial variation of PCDD/F and PCB emissions and their composition profiles in stack flue gas from the typical cement plants in China [J]. Chemosphere, 2018, 195: 491-497. doi: 10.1016/j.chemosphere.2017.12.114
    [56] ZHAO Y Y, ZHAN J Y, LIU G R, et al. Evaluation of dioxins and dioxin-like compounds from a cement plant using carbide slag from chlor-alkali industry as the major raw material [J]. Journal of Hazardous Materials, 2017, 330: 135-141. doi: 10.1016/j.jhazmat.2017.02.018
    [57] 张婧, 倪余文, 张海军, 等. 水泥窑除尘器捕集灰中PCDD/Fs、PCBs和PCNs的分布特征 [J]. 环境科学, 2009, 30(2): 568-573. doi: 10.3321/j.issn:0250-3301.2009.02.043

    ZHANG J, NI Y W, ZHANG H J, et al. Patterns of PCDD/Fs, PCBs and PCNs homologues in fly ash from cement kilns [J]. Environmental Science, 2009, 30(2): 568-573(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.02.043

    [58] KARADEMIR A. Health risk assessment of PCDD/F emissions from a hazardous and medical waste incinerator in Turkey [J]. Environment International, 2004, 30(8): 1027-1038. doi: 10.1016/j.envint.2004.05.008
    [59] 王昕, 刘晨, 颜碧兰, 等. 国内外水泥窑协同处置城市固体废弃物现状与应用 [J]. 硅酸盐通报, 2014, 33(8): 1989-1995. doi: 10.16552/j.cnki.issn1001-1625.2014.08.028

    WANG X, LIU C, YAN B L, et al. Statue and application of abroad and home co-processing of municipal solid waste by cement kiln [J]. Bulletin of the Chinese Ceramic Society, 2014, 33(8): 1989-1995(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2014.08.028

    [60] QIU J, TANG M H, PENG Y Q, et al. Characteristics of PCDD/Fs in flue gas from MSWIs and HWIs: Emission levels, profiles and environmental influence [J]. Aerosol and Air Quality Research, 2020, 20(10): 2085-2097. doi: 10.4209/aaqr.2019.11.0610
    [61] 王梦京. 铁矿石烧结行业脱硫工艺对多种UP-POPs协同减排研究[D]. 上海: 上海应用技术大学, 2016:54.

    WANG M J. UP-POPs emissions from sintering plants synergistically controlled by the desulfurization process[D]. Shanghai: Shanghai Institute of Technology, 2016:54(in Chinese).

    [62] 刘国瑞. 炼焦过程中典型UP-POPs的生成和排放研究[D]. 北京: 中国科学院大学, 2010:76.

    LIU G R. Formation and Emission of Selected UP-POPs during Coking Processes[D]. Beijing: University of Chinese Academy of Sciences, 2010:76(in Chinese).

    [63] WANG K, TIAN H Z, HUA S B, et al. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics [J]. The Science of the Total Environment, 2016, 559: 7-14. doi: 10.1016/j.scitotenv.2016.03.125
    [64] WU X C, ZHAO L J, ZHANG Y X, et al. Primary air pollutant emissions and future prediction of iron and steel industry in China [J]. Aerosol and Air Quality Research, 2015, 15(4): 1422-1432. doi: 10.4209/aaqr.2015.01.0029
    [65] BA T, ZHENG M H, ZHANG B, et al. Estimation and congener-specific characterization of polychlorinated naphthalene emissions from secondary nonferrous metallurgical facilities in China [J]. Environmental Science & Technology, 2010, 44(7): 2441-2446.
    [66] BA T, ZHENG M H, ZHANG B, et al. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China [J]. Chemosphere, 2009, 75(9): 1173-1178. doi: 10.1016/j.chemosphere.2009.02.052
    [67] ZHAO B, ZHENG M H, JIANG B. Dioxin emissions and human exposure in China: A brief history of policy and research [J]. Environmental Health Perspectives, 2011, 119(3): a112-a113.
    [68] FU J Y, CAI P T, ZHAN M X, et al. Formation and control of dioxins during thermal desorption remediation of chlorine and non-chlorine organic contaminated soil [J]. Journal of Hazardous Materials, 2022, 436: 129124. doi: 10.1016/j.jhazmat.2022.129124
    [69] 陈彤. 城市生活垃圾焚烧过程中二噁英的形成机理及控制技术研究[D]. 杭州: 浙江大学, 2006:134.

    CHEN T. Mechanism and exPerimental study on PCDD/Fs fonrration and control during munieiPal solid wastes incineration[D]. Hangzhou: Zhejiang University, 2006:134(in Chinese).

    [70] 龙红明, 丁龙, 钱立新, 等. 烧结烟气中NOx和二噁的减排现状及发展趋势 [J]. 化工进展, 2022, 41(7): 3865-3876.

    LONG H M, DING L, QIAN L X, et al. Current situation and development trend of NOx and dioxins emission reduction in sintering flue gas [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3865-3876(in Chinese).

    [71] HE H, GUO X H, JIN L Z, et al. The effect of adjusting sinter raw mix on dioxins from iron ore co-sintering with municipal solid waste incineration fly ash [J]. Energies, 2022, 15(3): 1136. doi: 10.3390/en15031136
    [72] JI Z Y, HUANG B B, GAN M, et al. Dioxins control as co-processing water-washed municipal solid waste incineration fly ash in iron ore sintering process[J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127138.
    [73] NEUER-ETSCHEIDT K, NORDSIECK H O, LIU Y B, et al. PCDD/F and other micropollutants in MSWI crude gas and ashes during plant start-up and shut-down processes [J]. Environmental Science & Technology, 2006, 40(1): 342-349.
    [74] XIONG S J, PENG Y Q, LU S Y, et al. PCDD/Fs from a large-scale municipal solid waste incinerator under transient operations: Insight formation pathways and optimal reduction strategies [J]. Journal of Environmental Management, 2022, 314: 114878. doi: 10.1016/j.jenvman.2022.114878
    [75] ADELODUN A A. Influence of operation conditions on the performance of non-thermal plasma technology for VOC pollution control [J]. Journal of Industrial and Engineering Chemistry, 2020, 92: 41-55. doi: 10.1016/j.jiec.2020.08.026
    [76] QIN Y, GU J, CAI W T, et al. Catalytic oxidation of chlorobenzene and PCDD/Fs over V2O5-WO3/TiO2: Insights into the component effect and reaction mechanism [J]. Environmental Science and Pollution Research International, 2022, 29(28): 42809-42821. doi: 10.1007/s11356-022-18768-0
    [77] TANG M H, YE Q L, DU C C, et al. PCDD/F removal at low temperatures over vanadium-based catalyst: Insight into the superiority of mechanochemical method [J]. Environmental Science and Pollution Research International, 2022, 29(5): 7042-7052. doi: 10.1007/s11356-021-15477-y
    [78] MA Y F, LAI J W, LI X D, et al. Field study on PCDD/F decomposition over VOx/TiO2 catalyst under low-temperature: Mechanism and kinetics analysis [J]. Chemical Engineering Journal, 2022, 429: 132222. doi: 10.1016/j.cej.2021.132222
    [79] TRINH M M, CHANG M B. Transformation of mono- to octa- chlorinated dibenzo-p-dioxins and dibenzofurans in MWI fly ash during catalytic pyrolysis process [J]. Chemical Engineering Journal, 2022, 427: 130907. doi: 10.1016/j.cej.2021.130907
    [80] ALVARADO R, RAMOS-BERDULLAS N, MANDADO M. On the adsorption affinity of graphene and white graphene sheets by dioxin-like pollutants [J]. International Journal of Quantum Chemistry, 2021, 121(9): e26591.
    [81] LONG Y P, SU Y T, XUE Y H, et al. V2O5-WO3/TiO2 catalyst for efficient synergistic control of NOx and chlorinated organics: Insights into the arsenic effect [J]. Environmental Science & Technology, 2021, 55(13): 9317-9325.
    [82] 环境保护部、国家质量监督检验检疫总局. 生活垃圾焚烧污染物控制标准: GB18485—2014[S]. 北京: 中国环境科学出版社, 2014.

    Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Standard for pollution control on the municipal solid waste incineration: GB18485-2014[S]. Beijing: China Environmental Science Press, 2014(in Chinese).

    [83] 国家环境保护总局、国家质量监督检验检疫总局. 危险废物焚烧污染控制标准: GB 18484—2001[S]. 北京: 中国环境科学出版社, 2001.

    State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine of PPC. Pollution control standard for hazardous waste incineration: GB 18484—2001[S]. Beijing: China Environmental Science Press, 2001 (in Chinese).

    [84] 环境保护部、国家质量监督检验检疫总局. 火葬场大气污染物排放标准: GB 13801-2015[S]. 北京: 中国环境科学出版社, 2015.

    Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Emission standard of air pollutants for crematory : GB13801-2015[S]. Beijing: China Environmental Science Press, 2015(in Chinese).

    [85] 环境保护部、国家质量监督检验检疫总局. 炼钢工业大气污染物排放标准: GB 28664—2012[S]. 北京: 中国环境科学出版社, 2012.

    Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Emission standard of air pollutants for steel smelt industry: GB 28664—2012[S]. Beijing: China Environmental Science Press, 2012(in Chinese).

    [86] 环境保护部、国家质量监督检验检疫总局. 钢铁烧结、球团工业大气污染物排放标准: GB 28662—2012[S]. 北京: 中国环境科学出版社, 2012.

    Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Emission standard of air pollutants for sintering and pelletizing of iron and steel industry: GB 28662—2012[S]. Beijing: China Environmental Science Press, 2012(in Chinese).

    [87] 环境保护部、国家质量监督检验检疫总局. 再生铜、铝、铅、锌工业污染物排放标准: GB 31574—2015[S]. 北京: 中国环境科学出版社, 2015.

    Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Emission standards of pollutants for secondary copper, aluminum, lead and Zink industry: GB 31574—2015[S]. Beijing: China Environmental Science Press, 2015(in Chinese).

    [88] 环境保护部、国家质量监督检验检疫总局. 水泥窑协同处置固体废物污染控制标准: GB 30485—2013[S]. 北京: 中国环境科学出版社, 2013.

    Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Standard for pollution control on co-processing of solid wastes in cement kiln: GB30485-2013[S]. Beijing: China Environmental Science Press, 2014(in Chinese).

    [89] WEI J X, LI H, LIU J G. Phase distribution of PCDD/Fs in flue gas from municipal solid waste incinerator with ultra-low emission control in China [J]. Chemosphere, 2021, 276: 130166. doi: 10.1016/j.chemosphere.2021.130166
    [90] LIN S L, WU J L, CHEN W H, et al. Ultra-low PCDD/F emissions and their particle size and mass distribution in a hazardous waste treatment system[J]. Journal of Hazardous Materials, 2022, 423(Pt A) : 127032.
    [91] MA Y F, LIN X Q, CHEN T, et al. Field study on the emission characteristics of micro/trace pollutants and their correlations from medical waste incineration [J]. Energy & Fuels, 2020, 34(12): 16381-16388.
    [92] 陈佳, 陈彤, 王奇, 等. 中国危险废物和医疗废物焚烧处置行业二噁英排放水平研究 [J]. 环境科学学报, 2014, 34(4): 973-979. doi: 10.13671/j.hjkxxb.2014.0158

    CHEN J, CHEN T, WANG Q, et al. PCDD/Fs emission levels of hazardous and medical waste incineration in China [J]. Acta Scientiae Circumstantiae, 2014, 34(4): 973-979(in Chinese). doi: 10.13671/j.hjkxxb.2014.0158

    [93] LI Y C, YANG Y, YU G, et al. Emission of unintentionally produced persistent organic pollutants (UPOPs) from municipal waste incinerators in China [J]. Chemosphere, 2016, 158: 17-23. doi: 10.1016/j.chemosphere.2016.05.037
    [94] LIU W B, TIAN Z Y, LI H F, et al. Mono- to Octa-chlorinated PCDD/Fs in stack gas from typical waste incinerators and their implications on emission [J]. Environmental Science & Technology, 2013, 47(17): 9774-9780.
    [95] TIAN H H, OUYANG N. Preliminary investigation on dioxins emission from MWS incinerators [J]. Environmental Chemistry, 2003, 22(3): 255-258.
    [96] YING Y X, XU L, LIN X Q, et al. Influence of different kinds of incinerators on PCDD/Fs: a case study of emission and formation pathway [J]. Environmental Science and Pollution Research, 2023,30: 5903-5916.
    [97] 雷鸣. 小型农村生活垃圾热处理炉二噁英及重金属的排放特性及控制研究[D]. 广州: 华南理工大学, 2017:110.

    LEI M. Emission characteristics and control of PCDD/Fs and heavy metals from small-scale thermal treatment furnace for disposing rural domestic solid waste [D]. Guangzhou: South China University of Technology, 2017:110(in Chinese).

    [98] 俞明锋, 付建英, 詹明秀, 等. 生活废弃物焚烧处置烟气中二噁英排放特性研究 [J]. 环境科学学报, 2018, 38(5): 1983-1988.

    YU M F, FU J Y, ZHAN M X, et al. The research of PCDD/Fs emission characteristics in flue gas from municipal solid waste incinerations [J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1983-1988(in Chinese).

    [99] WANG M J, LIU W B, HOU M F, et al. Mono- to octachlorinated polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from sintering plants synergistically controlled by the desulfurization process [J]. Environmental Science & Technology, 2016, 50(10): 5207-5215.
    [100] 王凤炜, 付建英, 林晓青, 等. 钢铁冶炼行业二噁英排放特性和厂区内大气中二噁英分布规律 [J]. 环境科学学报, 2018, 38(4): 1404-1409. doi: 10.13671/j.hjkxxb.2017.0461

    WANG F W, FU J Y, LIN X Q, et al. The emission characteristics of dioxins from steel industry and distribution of dioxins in the atmosphere of plant [J]. Acta Scientiae Circumstantiae, 2018, 38(4): 1404-1409(in Chinese). doi: 10.13671/j.hjkxxb.2017.0461

    [101] 唐娜, 李馥琪, 罗伟铿, 等. 废物焚烧及工业金属冶炼烟气中二噁英的排放水平及同系物分布 [J]. 安全与环境学报, 2018, 18(4): 1496-1502.

    TANG N, LI F Q, LUO W K, et al. Concentrations and congener distributions of PCDD/Fs in the flue gas from combustion and metallurgical processing [J]. Journal of Safety and Environment, 2018, 18(4): 1496-1502(in Chinese).

    [102] ZHAN M X, MA Y F, CHEN T, et al. PCDD/Fs characteristics in flue gas and surrounding environment of iron and steel smelting industry [J]. Environmental Science and Pollution Research International, 2021, 28(11): 14092-14104. doi: 10.1007/s11356-020-11650-x
    [103] SONG S, ZHOU X, GUO C Q, et al. Emission characteristics of polychlorinated, polybrominated and mixed polybrominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs, and PBCDD/Fs) from waste incineration and metallurgical processes in China [J]. Ecotoxicology and Environmental Safety, 2019, 184: 109608. doi: 10.1016/j.ecoenv.2019.109608
    [104] 环境保护部、国家质量监督检验检疫总局. 水泥工业大气污染物排放标准: GB 4915—2013[S]. 北京: 中国环境科学出版社, 2014.

    Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. Emission standard of air pollutants for cement industry: GB 4915—2013[S]. Beijing: China Environmental Science Press, 2014(in Chinese).

    [105] 肖海平, 茹宇, 李丽, 等. 水泥窑协同处置生活垃圾焚烧飞灰过程中二噁英的迁移和降解特性 [J]. 环境科学研究, 2017, 30(2): 291-297.

    XIAO H P, RU Y, LI L, et al. Migration and degradation characteristics of dioxins during the process of cement kiln co-processing of municipal solid waste incineration fly ash [J]. Research of Environmental Sciences, 2017, 30(2): 291-297(in Chinese).

    [106] CHEN T, ZHAN M X, LIN X Q, et al. Emission and distribution of PCDD/Fs and CBzs from two co-processing RDF cement plants in China [J]. Environmental Science and Pollution Research International, 2016, 23(12): 11845-11854. doi: 10.1007/s11356-016-6403-0
    [107] HUANG Y Q, LU J W, XIE Y S, et al. Process tracing of PCDD/Fs from economizer to APCDs during solid waste incineration: re-formation and transformation mechanisms [J]. Waste Management, 2021, 120: 839-847. doi: 10.1016/j.wasman.2020.11.007
    [108] MA Y F, LIN X Q, CHEN Z L, et al. Influence factors and mass balance of memory effect on PCDD/F emissions from the full-scale municipal solid waste incineration in China [J]. Chemosphere, 2020, 239: 124614. doi: 10.1016/j.chemosphere.2019.124614
    [109] 张漫雯, 冯桂贤, 黄蓉, 等. 国产活性炭喷射去除大型城市生活垃圾焚烧发电厂烟气中的二恶英 [J]. 环境工程学报, 2015, 9(11): 5531-5536. doi: 10.12030/j.cjee.20151164

    ZHANG M W, FENG G X, HUANG R, et al. Removal of dioxin in flue gas from a large-scale MSWI by domestic activated carbon injection [J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5531-5536(in Chinese). doi: 10.12030/j.cjee.20151164

    [110] ZHANG G, HAI J, CHENG J. Characterization and mass balance of dioxin from a large-scale municipal solid waste incinerator in China [J]. Waste Management, 2012, 32(6): 1156-1162. doi: 10.1016/j.wasman.2012.01.024
    [111] 孙立, 张晓东. 生物质热解气化原理与技术[M]. 北京: 化学工业出版社, 2013.

    SUN L, ZHANG X D. Principle and technology of biomass pyrolysis and gasification[M]. Beijing: Chemical Industry Press, 2013(in Chinese).

    [112] CHOI K I, LEE D H, OSAKO M, et al. The prediction of PCDD/DF levels in wet scrubbers associated with waste incinerators [J]. Chemosphere, 2007, 66(6): 1131-1137. doi: 10.1016/j.chemosphere.2006.06.019
    [113] 陆勇, 田洪海, 周志广, 等. 电弧炉炼钢过程中二噁英类的排放浓度和同类物分布 [J]. 环境科学研究, 2009, 22(3): 304-308.

    LU Y, TIAN H H, ZHOU Z G, et al. Concentrations and congener profiles of dioxins in stack gas and fly ash samples from an electric arc furnace [J]. Research of Environmental Sciences, 2009, 22(3): 304-308(in Chinese).

    [114] 孙鹏程, 李晓璐, 成钢, 等. 焦炉烟气中二噁英类物质排放水平研究 [J]. 环境科学, 2014, 35(7): 2515-2519. doi: 10.13227/j.hjkx.2014.07.012

    SUN P C, LI X L, CHENG G, et al. Preliminary investigation on emission of PCDD/Fs and DL-PCBs through flue gas from coke plants in China [J]. Environmental Science, 2014, 35(7): 2515-2519(in Chinese). doi: 10.13227/j.hjkx.2014.07.012

    [115] YANG Y P, WU G L, JIANG C, et al. Variations of PCDD/Fs emissions from secondary nonferrous smelting plants and towards to their source emission reduction [J]. Environmental Pollution, 2020, 260: 113946. doi: 10.1016/j.envpol.2020.113946
    [116] CHEN T, GUO Y, LI X D, et al. Emissions behavior and distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) from cement kilns in China [J]. Environmental Science and Pollution Research International, 2014, 21(6): 4245-4253. doi: 10.1007/s11356-013-2356-8
    [117] ZHAO C, DONG Y, FENG Y P, et al. Thermal desorption for remediation of contaminated soil: A review [J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079
    [118] LEE Y, CUI M, CHOI J, et al. Treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans contaminated soil using S2O82− with ferrous ion and heat as activating methods [J]. Chemical Engineering Journal, 2020, 384: 123299. doi: 10.1016/j.cej.2019.123299
    [119] PENG Y Q, LU S Y, LI X D, et al. Formation, measurement, and control of dioxins from the incineration of municipal solid wastes: Recent advances and perspectives [J]. Energy & Fuels, 2020, 34(11): 13247-13267.
    [120] WANG M J, LI Q Q, LIU W B, et al. Monochlorinated to octachlorinated polychlorinated dibenzo-p-dioxin and dibenzofuran emissions in sintering fly ash from multiple-field electrostatic precipitators [J]. Environmental Science & Technology, 2018, 52(4): 1871-1879.
    [121] WANG M J, LI Q Q, LIU W B. Effects of desulfurization processes on polybrominated dibenzop-dioxin and dibenzofuran emissions from iron ore sintering [J]. Environmental Science & Technology, 2018, 52(10): 5764-5770.
    [122] DENG D Y, QIAO J Q, LIU M Q, et al. Detoxification of municipal solid waste incinerator (MSWI) fly ash by single-mode microwave (MW) irradiation: Addition of urea on the degradation of Dioxin and mechanism [J]. Journal of Hazardous Materials, 2019, 369: 279-289. doi: 10.1016/j.jhazmat.2019.01.001
    [123] ZIMMERMANN R, BLUMENSTOCK M, HEGER H J, et al. Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: Delayed emission effects [J]. Environmental Science & Technology, 2001, 35(6): 1019-1030.
    [124] CHEN T L, CHEN L H, CHEN Y H, et al. A systematic approach to evaluating environmental-economic benefits of high-gravity technology for flue gas purification and municipal solid waste incineration fly ash utilization [J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106438. doi: 10.1016/j.jece.2021.106438
    [125] WANG P J, YAN F, CAI J J, et al. Emission levels and phase distributions of PCDD/Fs in a full-scale municipal solid waste incinerator: The impact of wet scrubber system [J]. Journal of Cleaner Production, 2022, 337: 130468. doi: 10.1016/j.jclepro.2022.130468
    [126] dal POZZO A, MURATORI G, ANTONIONI G, et al. Economic and environmental benefits by improved process control strategies in HCl removal from waste-to-energy flue gas [J]. Waste Management, 2021, 125: 303-315. doi: 10.1016/j.wasman.2021.02.059
    [127] XUE Y, LIU X M. Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review [J]. Chemical Engineering Journal, 2021, 420: 130349. doi: 10.1016/j.cej.2021.130349
    [128] ZHAN M X, LIU Y W, YE W W, et al. Modification of activated carbon using urea to enhance the adsorption of dioxins[J]. Environmental Research, 2022, 204(Pt B): 112035.
    [129] HSU Y C, CHANG S H, CHANG M B. Emissions of PAHs, PCDD/Fs, dl-PCBs, chlorophenols and chlorobenzenes from municipal waste incinerator cofiring industrial waste [J]. Chemosphere, 2021, 280: 130645. doi: 10.1016/j.chemosphere.2021.130645
    [130] WEI X N, LI T T. Wooden activated carbon production for dioxin removal via a two-step process of carbonization coupled with steam activation from biomass wastes [J]. ACS Omega, 2021, 6(8): 5607-5618. doi: 10.1021/acsomega.0c06032
    [131] GAN M, WONG G, FAN X H, et al. Enhancing the degradation of dioxins during the process of iron ore sintering co-disposing municipal solid waste incineration fly ash [J]. Journal of Cleaner Production, 2021, 291: 125286. doi: 10.1016/j.jclepro.2020.125286
    [132] LI H F, LIU W B, LU A X, et al. PCDD/Fs emissions from secondary copper production synergistically controlled by fabric filters and desulfurization [J]. Environmental Pollution, 2021, 270: 116065. doi: 10.1016/j.envpol.2020.116065
    [133] LIN X Q, MA Y F, CHEN Z L, et al. Effect of different air pollution control devices on the gas/solid-phase distribution of PCDD/F in a full-scale municipal solid waste incinerator[J]. Environmental Pollution, 2020, 265(Pt B): 114888.
    [134] LUO G P, ZHANG K, PENG Y Q, et al. Pilot study on removal characteristics of multiple pollutants by the dual baghouse filter system [J]. Energies, 2022, 15(10): 3728. doi: 10.3390/en15103728
    [135] LV Z Y, YU Y, REN M H, et al. Spraying polyacrylamide solution to improve the removal of particle-phase dioxins by bag filter in a full-scale municipal solid waste incineration system [J]. Chemosphere, 2021, 285: 131392. doi: 10.1016/j.chemosphere.2021.131392
    [136] GUO Y Y, LUO L, ZHENG Y, et al. Low-medium temperature application of selective catalytic reduction denitration in cement flue gas through a pilot plant [J]. Chemosphere, 2021, 276: 130182. doi: 10.1016/j.chemosphere.2021.130182
    [137] CAI X W, DU C M. Thermal plasma treatment of medical waste [J]. Plasma Chemistry and Plasma Processing, 2021, 41(1): 1-46. doi: 10.1007/s11090-020-10119-6
    [138] ORTIZ ALMIRALL X, SOLÀ YAGÜE N, GONZALEZ-OLMOS R, et al. Photochemical degradation of persistent organic pollutants (PCDD/FS, PCBS, PBDES, DDTS and HCB) in hexane and fish oil [J]. Chemosphere, 2022, 301: 134587. doi: 10.1016/j.chemosphere.2022.134587
    [139] ZHANG H J, ZHANG Y N, ZHONG Y C, et al. Novel strategies for 2, 8-dichlorodibenzo-p-dioxin degradation using ternary Au-modified iron doped TiO2 catalysts under UV-vis light illumination[J]. Chemosphere, 2022, 291(Pt 2): 132826.
    [140] DING X X, YANG Y T, ZENG Z Q, et al. Insight into the transformation behaviors of dioxins from sintering flue gas in the cyclic thermal regeneration by the V2O5/AC catalyst-sorbent [J]. Environmental Science & Technology, 2022, 56(9): 5786-5795.
    [141] LU S Y, XIANG Y F, CHEN Z L, et al. Development of phosphorus-based inhibitors for PCDD/Fs suppression [J]. Waste Management, 2021, 119: 82-90. doi: 10.1016/j.wasman.2020.09.019
    [142] CHEN Z L, LIN X Q, LU S Y, et al. Suppressing formation pathway of PCDD/Fs by S-N-containing compound in full-scale municipal solid waste incinerators [J]. Chemical Engineering Journal, 2019, 359: 1391-1399. doi: 10.1016/j.cej.2018.11.039
    [143] WIELGOSIŃSKI G, CZERWIŃSKA J, SZYMAŃSKA O, et al. Simultaneous NOx and dioxin removal in the SNCR process [J]. Sustainability, 2020, 12(14): 5766. doi: 10.3390/su12145766
    [144] WANG X X, MA Y F, LIN X Q, et al. Inhibition on de novo synthesis of PCDD/Fs by an N-P-containing compound: Carbon gasification and kinetics [J]. Chemosphere, 2022, 292: 133457. doi: 10.1016/j.chemosphere.2021.133457
    [145] CONESA J A. Sewage sludge as inhibitor of the formation of persistent organic pollutants during incineration [J]. Sustainability, 2021, 13(19): 10935. doi: 10.3390/su131910935
  • 加载中
图( 1) 表( 4)
计量
  • 文章访问数:  4655
  • HTML全文浏览数:  4655
  • PDF下载数:  116
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-07
  • 录用日期:  2022-09-16
  • 刊出日期:  2023-05-27
王得梁, 谢雯静, 赵文博, 何钰晴, 徐菁, 黄亚妮, 郝艳芬, 梁勇, 王璞. 工业过程二恶英的排放特征及其控制技术[J]. 环境化学, 2023, 42(5): 1449-1465. doi: 10.7524/j.issn.0254-6108.2022070704
引用本文: 王得梁, 谢雯静, 赵文博, 何钰晴, 徐菁, 黄亚妮, 郝艳芬, 梁勇, 王璞. 工业过程二恶英的排放特征及其控制技术[J]. 环境化学, 2023, 42(5): 1449-1465. doi: 10.7524/j.issn.0254-6108.2022070704
WANG Deliang, XIE Wenjing, ZHAO Wenbo, HE Yuqing, XU Jing, HUANG Yani, HAO Yanfen, LIANG Yong, WANG Pu. Dioxin emission characteristics and control technologies in industrial processes[J]. Environmental Chemistry, 2023, 42(5): 1449-1465. doi: 10.7524/j.issn.0254-6108.2022070704
Citation: WANG Deliang, XIE Wenjing, ZHAO Wenbo, HE Yuqing, XU Jing, HUANG Yani, HAO Yanfen, LIANG Yong, WANG Pu. Dioxin emission characteristics and control technologies in industrial processes[J]. Environmental Chemistry, 2023, 42(5): 1449-1465. doi: 10.7524/j.issn.0254-6108.2022070704

工业过程二恶英的排放特征及其控制技术

    通讯作者: Tel:13466359131,E-mail:puwang@jhun.edu.cn
  • 1. 江汉大学省部共建精细爆破国家重点实验室,武汉,430056
  • 2. 工业烟尘污染控制湖北省重点实验室,环境与健康学院,江汉大学,武汉,430056
  • 3. 国民核生化灾害防护国家重点实验室,北京,102205
基金项目:
江汉大学省部共建精细爆破国家重点实验室自主研究课题(PBSKL2022103)和国家自然科学基金(41977327)资助.

摘要: 工业排放是环境中二恶英(PCDD/Fs)最主要的人为排放源. 2010年我国九部委联合发布PCDD/Fs污染防治指导意见,之后出台多项政策要求对主要行业持久性有机污染物(POPs)开展污染防治. 在一系列防治措施下,PCDD/Fs的工业排放水平有所下降,整体取得良好成效. 本文针对固体废弃物焚烧、钢铁生产、有色金属生产和水泥窑协同处置四类主要行业的PCDD/Fs排放研究进展进行综述,阐述了不同行业PCDD/Fs排放量、排放特征及其变化趋势,比较分析了目前四类主要行业针对PCDD/Fs排放的控制技术及其效果,并对烟气中PCDD/Fs污染控制技术的发展方向进行了展望. 本文可为更加深入地了解工业排放PCDD/Fs的研究现状以及污染控制技术提供参考.

English Abstract

  • 二恶英(dioxins)是一类具有相似结构和性质的氯代芳香烃族杂环化合物的统称,包括多氯代二苯并-对-二恶英(polychlorinated dibenzo-p-dioxins,PCDDs)和多氯代二苯并呋喃(polychlorinated dibenzofurans,PCDFs),共有210个同族体. PCDD/Fs作为典型的非故意产生的持久性有机污染物(UP-POPs),其来源包括自然源和人为源两大类,前者包括火山爆发、森林火灾等一些自然过程,后者包括固体废弃物焚烧、钢铁生产、有色金属生产、含氯化学品生产和纸浆漂白等工业过程. 由于环境中的PCDD/Fs主要来源于人类活动,自然排放的PCDD/Fs极少,故针对PCDD/Fs的研究主要围绕人为源展开[1-2].

    研究显示,2004年我国PCDD/Fs大气排放量为5042 g毒性当量(TEQ),之后一段时间未见官方统计数据,但有研究指出2016年我国PCDD/Fs大气排放量为10366 g TEQ[3-4],尽管不同研究中对排放因子和生产强度的选择差异较大,导致PCDD/Fs大气排放量的计算存在一定差异[5],但金属生产、固体废弃物焚烧等工业污染源导致的PCDD/Fs排放量占大气总排放量的90%以上[4]. 因此积极削减工业源排放的PCDD/Fs是其污染防治的关键,也是我国履行《关于持久性有机污染物的斯德哥尔摩公约》,推动国内经济高质量发展和生态文明建设的必然选择.

    2010年我国加强大气污染物防治,工业废气治理投资快速增长,并于2014年达到峰值[6]. 但截止2018年,我国除固体废弃物焚烧行业外的其他行业专门针对UP-POPs控制的措施十分有限,且相关工作多停留在实验室研究阶段[7],与2010年的研究状况几近相似[8]. 减少工业污染源UP-POPs的排放仍然是我国POPs污染控制面临的最大挑战[7].

    尽管目前对PCDD/Fs的工业排放源已有大量研究报道,但对于不同工业的PCDD/Fs排放特征、污染控制措施及其成效评估的文献综述仍然相对较少,且近年来随着工业的发展,不同工业PCDD/Fs排放特征和排放量也发生了一定的变化,因此,有必要进一步对比以前和近年来PCDD/Fs排放特征、控制措施变化. 根据联合国环境规划署(UNEP)在2013年提出的《鉴别及量化PCDD/Fs类排放标准工具包》以及其他研究对不同行业PCDD/Fs的排放因子及排放量的核算结果[9-12],本文选取固体废弃物焚烧、钢铁生产、有色金属生产和水泥窑协同处置固体废弃物这四类排放因子较大、生产强度较高的行业为主要研究对象,系统总结了固体废弃物焚烧、钢铁生产、有色金属生产和水泥窑协同处置四类重要工业源PCDD/Fs排放的相关研究进展,阐述了不同行业PCDD/Fs排放特征及及其变化趋势,比较分析了这四类重要行业针对PCDD/Fs排放采取的控制技术及其效果,在此基础上对工业生产过程中PCDD/Fs污染控制技术的发展方向进行了展望. 本文可为更加深入了解工业排放PCDD/Fs的研究现状及其污染控制技术提供参考.

    • 焚烧等工业热过程中的PCDD/Fs生成机理包括高温气相合成、低温异相催化前驱体反应和低温异相催化从头合成等. 异相反应被认为是热过程PCDD/Fs的主要生成机理,可通过分析样品中PCDFs/PCDDs比值是否大于1来判断某排放源的PCDD/Fs生成途径是从头合成还是前驱体反应占主导地位[13].

    • 固体废弃物焚烧主要指生活垃圾、危险废物、医疗废弃物等固体废弃物的焚烧[3, 7]. 焚烧能减少70%—80%的质量以及90%的体积[14],且焚烧产生的热能不仅能有效杀灭病原体,还可以用来发电[15-16],因此焚烧逐渐成为固体废弃物集中处置的首选方法[17-18]. 2010—2020年,我国城市生活垃圾焚烧处理量从2317万t增长到14608万t(年增长率为53.0%),处理量和增长率均超过传统的填埋处理(9598万t下降为7772万t,年增长率为-19.0%);危险废物产生量从1587万t增长到7282万t,年增长率为35.9%[6, 19].

      从PCDD/Fs指纹分布看,大部分固体废弃物焚烧产生的烟气中PCDD/Fs以7—8氯代同族体为主,少部分以4—5氯代同族体为主,且PCDFs/PCDDs比值通常显著大于1,其生成机理主要为从头合成[7, 20-22]. 从PCDD/Fs排放量,2004年我国固体废物焚烧大气PCDD/Fs排放量为610 g TEQ(占大气PCDD/Fs排放量12.1%),2016年为2469 g TEQ(占大气PCDD/Fs排放量23.8%)[3-4],同2004年相比,2016年我国固体废弃物焚烧PCDD/Fs排放量增加1859 g TEQ(304.8%),排放占比升高11.7%. 在焚烧量相同的情况下,焚烧医疗废弃物和危险废弃物产生的PCDD/Fs要远高于生活垃圾焚烧的排放量[23].

      固体废弃物焚烧厂因规模、工艺和操作控制等差异较大,PCDD/Fs的排放水平有很大差别(0.5—3500 μg·t−1 TEQ)[11]. Ni等[24]在2009年的研究中指出,我国生活垃圾焚烧过程中PCDD/Fs的平均排放因子为1728 ng·t−1 TEQ,这与2013年UNEP提供的排放因子参考范围相一致[11],2018年Zhu等[25]的研究结果显示排放因子有所下降(27—225 ng·t−1 I-TEQ),其均值为170 ng·t−1 I-TEQ,这可能与后来的焚烧厂采取更加完善的控制措施有关. 若以2020年我国生活垃圾焚烧量14608万 t[6]和Zhu等的排放因子[25]进行推测,我国2020年生活垃圾焚烧PCDD/Fs排放量达3.9—36.7 g TEQ. 对于医疗废弃物,Cao等[26]2009年的研究指出我国此类焚烧炉烟气中PCDD/Fs排放因子为0.78—474 μg·t−1 I-TEQ,据此估算的当年医疗废弃物焚烧产生的PCDD/Fs为4.87 g TEQ;若以2019年我国医疗废弃物产量(226万 t)[27]进行推测,PCDD/Fs年排放量可达1.76—1071 g I-TEQ.

      总体相比于2004年,2016年我国固体废弃物焚烧行业大气PCDD/Fs总排放量增加1859 g TEQ(304.8%),排放占比升高11.7%[3-4]. 同时,由于焚烧技术的推广,新冠疫情后医疗废弃物的产量急剧增加(增幅可达24.7%)[28],危险废弃物处置量于2020年首次超过产生量[6, 19],这可能直接导致固体废弃物焚烧PCDD/Fs排放量的增加,然而相关研究报道比较欠缺,相关工作有待进一步开展.

    • 钢铁生产流程可分为长流程和短流程两种,其中长流程是指以铁矿石为原料,以烧结、球团、炼焦、高炉炼铁、转炉炼钢和轧钢等工序为整套流程的生产工艺;短流程则是以废钢和直接还原铁为原料,直接从电炉炼钢开始的生产工艺[29]. 我国长流程炼钢约占90%左右[30],但因电炉炼钢过程中废钢原料中的塑料和油漆等有机物对该过程PCDD/Fs的产生有重要影响[31],故本文中的钢铁生产主要是指长流程生产工艺和电炉炼钢.

      炼焦、烧结、电弧炉炼钢等钢铁生产过程中生成的PCDD/Fs均以7-8氯代同族体为主,且PCDFs/PCDDs比值大于1,其主要生成途径为从头合成[11, 32-34]. 从排放量来看,2004年我国钢铁行业大气PCDD/Fs排放量为1923 g TEQ,而针对2016年的研究则估算为5333 g TEQ,同2004年相比PCDD/Fs排放量增加177.3%[3-4]. 我国钢铁生产行业大气PCDD/Fs排放的90%以上集中在3个环节:铁矿石烧结(60%以上)、电弧炉炼钢(20%—30%)和炼焦(5%—10%)[35-36],因此后续研究控制应重点关注这些主要过程.

      汤铃等[30]对我国966家钢铁企业(占我国粗钢产量96.4%)进行研究表明,2018年我国钢铁行业烧结和电炉工序的PCDD/Fs排放因子分别为1583、1246 ng I-TEQ·t−1,而炼焦等其它工序的排放因子小于300 ng I-TEQ·t−1;关于烧结和电炉排放PCDD/Fs的研究结果与Wang等[37-38]的结果基本一致(1330—7610 ng·t−1 I-TEQ和177—869 ng·t−1 I-TEQ),但远高于2020年杨艳艳等[36]的研究结果((180±220)ng·t−1 I-TEQ和(270±230 ng·t−1 )I-TEQ),这可能与后者所涉及的研究企业数量较少、生产工艺和污染控制措施较为先进等因素有关. 根据汤铃[30]等获得的排放因子和高炉炼铁物料平衡关系(每 t生铁需要1.6 t铁矿石和0.4 t焦炭)[39-41],结合我国2020年生铁和粗钢产量(分别为88898、106477万 t)[6],2020年我国烧结和电弧炉炼钢大气PCDD/Fs排放量分别为2252 g I-TEQ和133 g I-TEQ(焦炭和转炉炼钢分别为57 g I-TEQ、266 g I-TEQ),明显高于固体废弃物焚烧的PCDD/Fs估算值.

      总体来看,相比于2004年,2016年我国钢铁行业大气PCDD/Fs排放量增加3410 g TEQ(117.3%),排放占比升高13.3%[3-4];同时结合现有数据对我国钢铁行业大气PCDD/Fs的排放进行计算,结果表明目前钢铁行业仍具有较高的大气PCDD/Fs排放水平,因此,针对该行业PCDD/Fs排放及其控制的研究仍需持续加强.

    • 有色金属生产包括有色金属生产和再生有色金属生产,其中再生有色金属生产因原料中含废弃导线、电子部件和废旧塑料等,为PCDD/Fs的产生提供了丰富的氯源,经物料中的铜、铁等金属的催化后可生成大量PCDD/Fs(与有色金属生产相比可增加1—3个数量级)[37, 42-43]. 有色金属种类丰富,原料和生产工艺的不同对PCDD/Fs的排放特征和排放量有较大影响,但多数研究表明有色金属行业排放的PCDD/Fs主要源于铝、铜、铅生产过程[42, 44].

      从指纹分布来看,铜生产过程中产生的PCDD/Fs多以7—8氯代同族体为主,且高氯代单体比例同原料中废铜含量成正比;而铝、铅、镁生产过程中多以4—7氯代同族体为主,主要生成途径为从头合成[45-48]. 从排放量来看,2004年我国有色金属行业大气PCDD/Fs排放量为563 g I-TEQ[3];近年来关于有色金属行业PCDD/Fs排放的研究数据较少,文献报道2013年再生铝生产过程中PCDD/Fs排放量为609 g I-TEQ[42],高于2004年有色金属行业的总排放量,由此推测2004至2013年有色金属生产行业PCDD/Fs排放量可能呈现出一定的增加趋势.

      聂志强[49]对铜、镁冶炼以及废旧导线焚烧回收过程的研究表明,PCDD/Fs排放因子范围为38.5—5569 ng·t−1 TEQ;这与Yu等[38, 50]的研究结果基本一致(14.2—24451 ng·t−1 I-TEQ),但远低于Zou等[37]的研究结果(0.24—1.7 g·t−1 I-TEQ,其中二次铅生产的排放因子为4297 ng·t−1 I-TEQ). 排放因子范围变化较大的原因可能与有色金属类型、生产原料、生产工艺和控制措施等有关. 目前有色金属产量以精炼铜、电解铝以及十种有色金属总产量来核算,因此难以对有色金属行业排放的PCDD/Fs进行相对精细的计算,但2004至2020年我国十类有色金属总产量从1430万t增加到6188万t[6, 51],相关生产过程排放的PCDD/Fs总量可能出现相应增加.

    • 因固体废弃物中含有水泥生产所需的部分原料,同时水泥窑的工作温度较高(1600 ℃以上)、物料停留时间长(30 min以上),因此水泥窑常被开发用于固体废弃物的协同处置[52-53]. 但固体废弃物中的大量氯源和金属催化剂在高温过程中可能导致PCDD/Fs的产生[3],因此水泥窑协同处置也是PCDD/Fs的排放源. 水泥窑协同处置过程中废弃物的类型、添加量、处理工艺等均会影响PCDD/Fs的排放特征和排放量[54].

      从指纹分布特征看,除少数样品中PCDD/Fs以7—8氯代同族体为主外,大部分水泥窑协同处置过程产生的PCDD/Fs以4—6氯代同族体为主[53-56],主要生成途径为从头合成. 从排放量看,2004年我国水泥生产过程PCDD/Fs排放量为365.3 g TEQ[3]. 张婧等[57]研究指出,不同炉型的水泥窑PCDD/Fs排放因子差别可达100倍,而我国主要采用的水泥立窑生产工艺,PCDD/Fs排放因子为5.0 μg·t−1 TEQ,远高于干法旋窑. Aykan[58]对协同处置危险废物和医疗废弃物的水泥窑进行研究,结果表明烟气中PCDD/Fs排放量为每年0.02 g. 2018年Zou等[55]研究指出,我国水泥窑协同处置过程PCDD/Fs排放因子为0.01—1.35 mg·t−1 I-TEQ. 尽管2020年我国水泥生产高达339736万 t[6],但其中协同处置固体废弃物生产的水泥比例并不清晰,无法对该过程PCDD/Fs排放量进行计算[59]. 以水泥工业计划中提出的2015年建成10%的协同处置水泥厂的目标来推算[59],水泥窑PCDD/Fs排放量将达到2397 g I-TEQ,这与钢铁生产行业的排放量几乎相当. 由于我国水泥窑协同处置固体废弃物的生产线投产较晚,相关研究的基础数据仍然较少,因此加强水泥窑协调处置固体废弃物过程中PCDD/Fs的排放监测研究十分必要,可为准确评估该行业PCDD/Fs排放量提供重要科学依据.

    • 基于以上排放特征分析,固体废弃物焚烧、钢铁生产和铜生产排放的PCDD/Fs多以7—8氯代同族体为主,而水泥窑协同处置和铅、铝等有色金属生产过程中多以4—6/7氯代同族体为主;尽管不同行业的PCDD/Fs指纹分布特征有所不同,但均以呋喃类为主要同族体,表明其来源主要为从头合成机理[20, 34, 45, 54].

      从排放量分析(表1图1),PCDD/Fs排放量依次为钢铁生产>固体废弃物焚烧>有色金属生产>水泥窑协同处置;依据现有文献数据进行估算,2020年PCDD/Fs排放量依次为钢铁生产>水泥窑协同处置>有色金属色生产>固体废弃物焚烧,但水泥窑协同处置的排放量存在较大不确定性,仍需要更多的研究结果进行支撑.

    • 相比于发达国家,我国PCDD/Fs污染控制工作起步较晚[67]. 根据PCDD/Fs的生成机理及其来源,PCDD/Fs的控制主要针对生成前、生成中和生成后三个过程开展相关工作[44]. 原料中的PCDD/Fs大多在高温下可直接分解,因此高温再生成是PCDD/Fs排放量的主要来源,故PCDD/Fs的控制减排主要通过控制运行的工作参数、添加抑制剂或增加末端空气污染控制装置(APCDs)等措施[68](详见表2),本文主要针对工业烟气末端处理装置及其控制效果进行综述介绍.

      由于不同行业烟气中PCDD/Fs的排放特征和浓度有所差别,烟气温度、烟气量、烟气中粉尘和氮氧化物等常规污染物的种类和数量相差较大,因此不同行业APCDs存在一定差异,而PCDD/Fs多以协同净化为主[81],且不同行业排放控制标准不尽相同(见表3),因此本文针对不同行业的措施效果分别进行综述.

    • 固体废弃物焚烧作为PCDD/Fs主要的排放源,相关控制技术比较完善[7]. Wei等[89]研究发现,经过垃圾发酵等预处理措施和焚烧参数控制后,采用半干洗涤器(SDS)+干洗涤器(DS)+活性炭喷射(AC)+袋式除尘器(BF)+选择性催化还原(SCR)技术组成的APCDs对烟气中PCDD/Fs进行脱除,最终的排放水平可达0.0028 ng·m−3I-TEQ,远低于0.1 ng·m−3 I-TEQ的控制标准;许多研究也表明,通过良好的过程和末端控制,固体废弃物焚烧厂烟气中PCDD/Fs的排放基本都能满足相关标准要求[25, 90-91]. 值得注意的是,一些研究也报道了焚烧厂由于控制技术不达标或不稳定,造成存在PCDD/Fs超标排放的现象(排放水平最高可达8.12 ng·m−3 I-TEQ,均值为0.423 ng·m−3 I-TEQ)[20, 24-26, 92-95]. 基于已有文献报道(表4),目前固体废弃物焚烧行业的PCDD/Fs末端控制技术基本以AC+BF为主,配以SDS、DS、WS、SCR、SCNR等不同技术组成APCDs,可有效降低烟气中PCDD/Fs浓度[96-98].

    • 钢铁生产流程较长,不同工序烟气理化性质差异较大,其中烧结因烟气温度高、含尘量大等原因不适合使用BF,而静电除尘器(ESP)使用较为普遍[99]. 2018年,我国烧结和炼钢的PCDD/Fs达标率仅为33.3%和66.7%[100-101]. 近期研究表明[36, 102],截止2021年,我国钢铁行业排放烟气中PCDD/Fs的浓度范围为0.05—2.93 ng·m−3 I-TEQ,均值为0.42 ng·m−3 I-TEQ,同2005—2019年相比下降1—2个数量级,能够满足0.5 ng·m−3 I-TEQ的排放要求. 钢铁生产行业的PCDD/Fs末端控制技术以ESP或BF为主,配备SCR、湿法脱硫等脱硫脱硝技术组成的APCDs(表4),可对PCDD/Fs等污染物进行协同控制. 尽管排放烟气中PCDD/Fs的浓度能够达到0.5 ng·m−3 I-TEQ的排放要求,但其排放浓度仍普遍高于固体废弃物焚烧行业. 因此钢铁行业尤其是烧结、电炉炼钢等工序的PCDD/Fs排放形势仍较为严峻,相关污染控制研究工作需进一步加强.

    • 有色金属生产通常采用的烟气PCDD/Fs控制技术见表4. 目前我国对再生有色金属生产行业烟气PCDD/Fs的排放限值为0.5 ng·m−3 TEQ [87]. 研究表明[47, 103],有色金属生产厂采用以BF或ESP为主要控制技术时,烟气中PCDD/Fs排放水平为0.009—0.13 ng·m−3 I-TEQ,能够持续满足0.5 ng·m−3 TEQ的限值要求. 但部分工厂排放PCDD/Fs的水平接近甚至超过限值要求(表4),且有色金属生产厂PCDD/Fs排放超标率可达22.2%[101]. 这表明能否有效利用现有控制技术(如BF或ESP为主的烟气污染控制系统)对有色金属行业的PCDD/Fs污染控制具有重要影响.

    • 水泥窑协同处置行业针对烟气污染采取的控制技术和手段见表4. 水泥工业本身对排放的烟气中PCDD/Fs浓度水平并无明确限值,目前协同处置固体废物的水泥窑烟气中PCDD/Fs排放限值为0.1 ng·m−3 TEQ [88, 104]. 尽管水泥窑协同处置固体废物时原料中PCDD/Fs浓度较高,但经过高温分解处理后,烟气采用BF、BF+SNCR(选择性非还原催化)或ESP为主的APCDs进行净化,PCDD/Fs排放水平可达0.011—0.076 ng·m−3 I-TEQ[55, 103, 105-106],均可使PCDD/Fs以较低浓度排放.

    • 表4中可以看出,目前固体废弃物焚烧行业多以BF或AC+BF为主要技术,配备SDS、DS等非ESP技术组成的APCDs对烟气进行深度净化;钢铁生产、有色金属生产、水泥窑协同处置行业则以BF或ESP为主要技术,配备SDS、脱硫脱硝等技术组成的APCDs对烟气进行处理. 当过程控制和末端控制均能得到有效保障时,烟气中PCDD/Fs的排放水多处于较低水平,但钢铁生产和有色金属生产的PCDD/Fs排放强度仍然明显高于其他行业.

    • 本文系统的总结了固体废弃物焚烧、钢铁生产、有色金属生产和水泥窑协同处置等四类主要行业烟气中PCDD/Fs排放特征及污染控制的研究进展. 从排放特征来看,水泥窑协同处置行业排放的PCDD/Fs以4—6/7氯代同族体为主要单体,而固体废弃物焚烧、钢铁生产、有色金属生产等行业排放的PCDD/Fs以7—8氯代同族体为主,四类工业源的主要生成机理均为从头合成;从现有排放量数据来看,2004—2016年我国大气PCDD/Fs总排放量上升明显,PCDD/Fs排放量依次为:钢铁生产>固体废弃物焚烧>有色金属生产>水泥窑协同处置;依据现有文献数据进行估算,2020年PCDD/Fs排放量依次为钢铁生产>水泥窑协同处置>有色金属色生产>固体废弃物焚烧,但水泥窑协同处置固体废弃物产生PCDD/Fs的研究仍比较有限,相关工作亟需加强.

      从烟气中PCDD/Fs的控制技术来看,在传统污染控制装置基础上增加活性炭吸附、催化剂、抑制剂等可以有效降低PCDD/Fs的大气排放[117-119]. 但目前各类工业源的PCDD/Fs末端控制多以除尘器结合吸附脱除装置为主,并未实现PCDD/Fs的总量削减;此外由于记忆效应导致的PCDD/Fs排放水平变化以及飞灰中高浓度PCDD/Fs带来的固废处置问题也给现有技术升级带来较大难度[46, 89, 120-123],因此,如何有效控制PCDD/Fs的排放总量仍然面临极大挑战. 末端控制技术方面,AC+BF吸附技术存在活性炭使用量大、价格高、活性炭吸附效率低、存在记忆效应、产生高毒性粉煤灰等缺点[108, 124-127],近年来,生物质制备活性炭、活性炭改性处理、双袋式除尘器、喷射聚丙烯胺、协同处置粉煤灰、热等离子体、紫外光降解等技术逐渐得到开发,能够有效改善或避免吸附法存在的问题[76-80, 128-136],然而诸多新技术尚停留在实验室阶段,且PCDD/Fs降解技术还存在反应时间长、去除效率不稳定等问题[137-140]. 因此尚无法在企业层面上推广应用.

      一些针对工业过程中PCDD/Fs生成的研究发现,传统硫脲、硫酸铵等含N或含S的抑制剂存在氨溢出、额外成本等问题,研发使用无氨溢出风险的氧化钙,或采用含N或P的污泥等作为抑制剂可降低污染控制成本,且具有良好的抑制PCDD/Fs生成的控制效果[141-145],可能是未来控制某些工业过程中PCDD/Fs排放的重要技术手段.

      基于以上研究现状,本文对典型工业过程中PCDD/Fs排放特征及其污染控制研究做以下两方面展望:

      (1) 工业过程是PCDD/Fs人为排放的主要来源,尽管我国已经制定了相关行业的排放标准,排放总量也有所下降,但是部分行业仍然存在PCDD/Fs排放量增加的趋势,因此及时更新典型行业PCDD/Fs排放因子并完善排放清单,对于我国履行《斯德哥尔摩公约》和降低PCDD/Fs暴露风险具有重要意义.

      (2) 对工业排放PCDD/Fs的控制应遵循“源头-过程-末端”的全过程控制原则. 开发新技术新材料,通过对原料预处理等措施从源头上弱化PCDD/Fs生成条件;通过添加抑制剂等措施从过程中减少PCDD/Fs的生成;积极研发PCDD/Fs的催化降解技术,结合活性炭吸附等末端控制技术可实现PCDD/Fs排放总量的有效削减.

    参考文献 (145)

返回顶部

目录

/

返回文章
返回