-
随着我国大量城镇污水处理厂的建成运行,排入水环境容量小的敏感受纳水体的城镇污水厂尾水排放量日益增加,北京、昆明、河北、浙江[1]等地相继提出了《城镇污水处理厂污染物排放标准》地方排放标准,这些标准中的高标准要求出水
${\rm{NH}}_4^{+} $ -N、TN、TP限值分别为1.0~1.5、5~10、0.05~0.3 mg·L−1,比现行国家《城镇污水处理厂污染物排放标准》(GB 18918-2002)中一级标准A标准更严格。因此,对城镇污水进行高标准深度除磷脱氮成为当务之急。传统A2O工艺的脱氮和除磷过程均需要碳源[2],对于C/N较低的城市污水难以实现氮、磷同步高标准深度去除。为解决传统A2O工艺中碳源不足的问题,曹贵华采用分段多点进水方式降低碳源损耗,以提高A2/O工艺的碳源利用率[3]。此外,有研究者提出通过新的脱氮除磷路径减少对碳源的需求。如短程硝化反硝化脱氮可节省40%的碳源,但短程硝化反硝化效能易受DO、温度、泥龄影响[4-5],不能实现稳定的短程硝化。而反硝化除磷技术则利用反硝化聚磷菌,以硝态氮为电子受体分解胞内储存的PHAs,利用产生的能量吸磷,通过“一碳两用”同时脱氮和除磷[6],可节省碳源50%。因此,罗亚红在A2O工艺末端进行间歇曝气构建了反硝化除磷系统,在除磷脱氮的同时可减少碳耗及能耗[7],但该系统对氮、磷去除效能的提升有限。陈永志[8]构建了A2O-BAF工艺,利用反硝化除磷路径减少碳源消耗,但仍然难以实现高标准除磷脱氮。此外,好氧反硝化是一种新型脱氮途径,在好氧过程中进行好氧反硝化脱氮,可以减少好氧过程中的碳源损耗[9]。
针对城镇污水AAO工艺进行高标准除磷脱氮存在的碳源不足问题,本研究构建了城镇污水厌氧/缺氧/好氧/缺氧(anaerobic-anoxic-aerobic-anoxic,简称AAOA)的除磷脱氮技术,在不补充碳源条件下,通过多路径耦合的城镇污水脱氮除磷技术实现城镇污水的高标准除磷脱氮。重点探究了在进水C/N对城镇污水AAOA系统深度除磷脱氮效能的影响,确定了AAOA系统实现高标准脱氮需要的C/N;解析了污染物沿程去除规律,并利用16S rRNA高通量测序技术探究了系统微生物种群结构及微生物作用机制。在此基础上,开展了实际城镇污水AAOA处理实验,在不补充碳源条件下,通过构建多路径除磷脱氮的AAOA系统,实现城镇污水高标准脱氮除磷。本研究结果可为城镇污水高标准除磷脱氮以及传统A2O工艺的城镇污水厂的提标改造提供参考。
-
实验装置如图1所示, AAOA反应器小试装置有效容积为40 L,实际城镇污水处理实验装置有效容积为200 L,反应器由厌氧、缺氧、好氧、后缺氧工艺段构成,各工艺段体积比1∶2∶4∶1。
-
实验分2个阶段进行:第1阶段小试实验废水采用人工配水模拟城镇污水,主要由乙酸钠、淀粉、奶粉、氯化铵、磷酸二氢钾、氯化钙、硫酸铁配制而成,根据当地城镇污水厂实际运行水质,模拟了3种C/N(6、7.5、9)的城镇污水水质(表1);第2阶段在城镇污水厂进行,采用某污水厂生化池前配水井中的实际城镇污水,实验水质如表2所示。
-
通过模拟不同进水C/N的城镇污水,探究AAOA系统实现城镇污水高标准除磷脱氮适宜的进水C/N。在温度为20 ℃、TN负荷为0.13 kg·(m3·d) −1、PO43--P负荷为0.02 kg·(m3·d)−1、水力停留时间为8 h(厌氧、缺氧Ⅰ、好氧、缺氧Ⅱ段水力停留时间分别为1、2、4、1 h)、好氧段DO为2.00~3.00 mg·L−1、混合液和污泥回流比R1和R2均为200%、泥龄为40 d的条件下运行反应器,采用阶段实验,控制进水C/N分别为6、7.5、9。
在城镇污水厂开展基于实际城镇污水的AAOA系统处理效能实验。在温度为23~30 ℃、有机负荷为0.40~0.76 kg·(m3·d)−1、TN负荷为0.08~0.12 kg·(m3·d)−1、PO43--P负荷为0.01~0.02 kg·(m3·d)−1、泥龄为40 d、水力停留时间为8 h(厌氧、缺氧Ⅰ、好氧、缺氧Ⅱ段水力停留时间分别为1、2、4、1 h)、好氧段DO为1.50~2.50 mg·L−1、混合液和污泥回流比R1和R2均为200%,在不补充碳源条件下,探究AAOA系统对实际城镇污水的深度除磷脱氮效能。
实验期间测试反应器进、出水COD、
${\rm{NH}}_4^{+} $ -N、TN、PO43--P等水质指标。系统稳定运行后,测试污染物在各工艺段的沿程降解规律。进行16S rRNA高通量测序的生物样品,取自C/N为7.5反应器运行第30天时,AAOA系统的二沉池,采集的生物样品送至生物公司进行测试,包括基因组DNA的提取、PCR扩增、荧光定量、Miseq文库构建、Miseq测序、OTU 聚类、分类学分析。采用针对16S rRNA基因V3~V4高变区的引物338F (ACTCCTACGGGAGGCAGCAG) 和806R(GGACTACHVGGGTWTCTAAT)进行扩增, PCR扩增采用Transstart fastpfu DNA聚合酶,所有 PCR 产物均使用 QuantiFluor-ST 蓝色荧光定量系统(Promega,美国)进行定量测定,并通过 PacBio RS II 测序平台对文库进行测序,测序数据利用Mothur软件对种群估计量进行计算和分析,探究系统微生物种群。 -
在不同C/N进水条件下,AAOA系统的处理效能见图2。当系统进水C/N由6增加到9时,系统出水
${\rm{NH}}_4^{+} $ -N平均质量浓度由0.04 mg·L−1上升到0.14 mg·L−1,${\rm{NH}}_4^{+} $ -N平均去除率由99.91%下降至99.66%,系统对${\rm{NH}}_4^{+} $ -N的去除率维持在99%以上。这是由于前置的厌氧、缺氧段充分利用进水中的碳源进行厌氧释磷和反硝化脱氮,使得好氧段进水中有机物浓度较低;同时,较高的泥龄有利于好氧段自养硝化菌的增殖富集,使系统保持高效硝化效能。当系统进水C/N由6、7.5、9时,系统出水COD平均值分别为16、18、20 mg·L−1,COD净去除量分别为238、300、350 mg·L−1,随着C/N增加,系统对COD的净去除量增加。这是由于随着C/N增加,系统除磷脱氮效能提高,用于生物除磷脱氮的碳源增加,有机碳源利用率增加,使得系统对COD去除能力增强。进水C/N分别为6、7.5、9时,系统出水TN平均质量浓度分别为10.49、6.13、4.06 mg·L−1,TN平均去除率分别为74.12%、84.50%、90.05%。相关研究表明,当城镇污水C/N为6和7.5时, AOA工艺的TN去除率分别为62%、65%[10]。相比之下,AAOA系统对TN去除率有大幅提升。这是由于系统中成功富集了异养反硝化、内碳源反硝化、反硝化聚磷、好氧反硝化菌属(第2.3节),系统通过其多种反硝化路径协同作用,实现了高效脱氮。当进水C/N分别为6、7.5、9时,系统出水PO43--P平均质量浓度分别为3.15、0.12、0.08 mg·L−1,PO43--P平均去除率分别为48.29%、97.68%、98.50%。这是由于AAOA系统在空间上依次以厌氧-缺氧-好氧-缺氧方式运行,其厌氧、缺氧、好氧、缺氧交替状态为聚磷菌和反硝化聚磷菌提供了良好的增殖环境。当C/N为6时,由于系统碳源不足,系统脱氮效能较低,回流污泥中携带较多硝态氮,当原水进入厌氧段时,反硝化菌会首先利用原水中的碳源进行反硝化,造成反硝化菌和聚磷菌竞争碳源,使得厌氧段释磷时碳源不足,从而影响系统对聚磷菌的富集,使得系统除磷效能较低;当C/N为7.5时,磷去除率大幅增加,但与C/N为9 时相比,系统的磷去除率差异不大。这是由于充足的碳源增加促进了聚磷菌的厌氧释磷,有效富集了聚磷菌,有利于系统中PO43--P去除效能提升;同时,厌氧-缺氧-好氧-缺氧方式运行有利于反硝化聚磷菌的富集,在缺氧段中反硝化聚磷菌一碳二用,同时发生的反硝化脱氮和基于硝态氮下的吸磷节省了大量碳源,使系统的除磷效能大幅提高,进而实现高标准除磷。在不同C/N下,AAOA系统沿程变化见图3。当进水C/N分别为6、7.5、9时,在厌氧段氮磷的变化为:一方面,
$ {\rm{NH}}_4^{+}$ -N质量浓度因稀释作用下降,反硝化菌利用进水中的耗氧有机物(以COD计)为碳源进行反硝化脱氮,NO2--N、NO3--N被去除,TN质量浓度分别下降至11.64、11.58、11.87 mg·L−1;另一方面, 在该厌氧区,聚磷菌和反硝化聚磷菌(第2.3节)利用进水碳源释磷,PO43--P质量浓度分别升高至6.25、10.03、16.05 mg·L−1。厌氧段出水后进入缺氧段Ⅰ,此时,因混合液回流至缺氧段的稀释作用,
${\rm{NH}}_4^{+} $ -N质量浓度进一步降低。 当进水C/N分别为6、7.5、9时,其NO2--N质量浓度几乎为零, NO3--N质量浓度分别上升至2.01、0.17、0.22 mg·L−1,硝氮通过异养反硝化、反硝化聚磷菌(第2.3节)去除较为完全,TN质量浓度分别降低为10.91、6.32、5.31 mg·L−1;同时,通过反硝化聚磷菌反硝化吸磷,在缺氧段PO43--P质量浓度分别降低至5.64、3.10、9.17 mg·L−1。当缺氧段Ⅰ出水进入好氧段后且进水C/N分别为6、7.5、9时,系统$ {\rm{NH}}_4^{+}$ -N质量浓度分别大幅降低至0.31、0.31、0.84 mg·L−1,好氧段通过异养和自养硝化硝化菌(第2.3节)共同作用,硝化速率分别达到19.15、19.10、19.59 mg·(L·h)−1,${\rm{NO}}_3^{-} $ -N质量浓度分别上升至11.26、5.69、3.31 mg·L−1,TN质量浓度分别为11.59 、6.00、4.18 mg·L−1;同时,聚磷菌在好氧状态下吸磷,PO43--P质量浓度分别降低至4.19、1.68、0.02 mg·L−1。当好氧段出水进入缺氧Ⅱ段,${\rm{NH}}_4^{+} $ -N浓度基本保持不变;异养反硝化、反硝化聚磷菌利用内碳源进行反硝化脱氮,NO3--N质量浓度分别下降至10.42、4.99、1.21 mg·L−1,TN质量浓度随之下降至10.65、5.26、1.97 mg·L−1;在通过反硝化聚磷后,PO43--P质量浓度进一步下降至3.66、1.23、0.05 mg·L−1。缺氧Ⅱ段使得回流污泥中的硝氮质量浓度进一步降低,可减少硝氮对厌氧释磷的影响,有利于聚磷菌、内碳源反硝化菌及反硝化聚磷菌在系统中维持优势。在不同C/N下,AAOA系统各单元的ORP指标沿程变化如图3(d)所示。当进水C/N分别为6、7.5、9时,厌氧段ORP分别为−141.51、−183.51、−288.10 mV,缺氧Ⅰ段ORP分别为−147.60、−173.41、−270.20 mV,好氧段ORP分别为−65.61、−25.60、−41.61 mV,缺氧Ⅱ段ORP分别为−52.50 、−52.30、−61.80 mV。随着C/N的升高,厌氧段ORP大幅下降,液相呈现出的宏观还原性逐渐增强,C/N越高则ORP越低,系统厌氧释磷越充分,有利于系统对磷的去除,这是在不同C/N下系统除磷具有差异的重要原因。进入缺氧段后,C/N越高则ORP越低,越有利于反硝化。进入好氧段后ORP均大幅升高,系统中大多数还原性物质被氧化,较高的氧化还原电位使系统保持较高的氧化性。出水进入缺氧段Ⅱ,不同C/N反应器的ORP较好氧段略微降低,缺氧段Ⅱ保持一定的缺氧还原态环境,可为系统进一步深度反硝化脱氮提供良好的环境。
上述实验结果表明,进水C/N分别为6、7.5、9时,系统TN平均去除率分别为74.12%、84.90%、90.05%,PO43--P平均去除率分别为48.29%、97.68%、98.5%;在3种C/N条件下,出水COD、
${\rm{NH}}_4^{+} $ -N、TN、PO43--P分别为16、0.04、10.49、3.15 mg·L−1;18、0.05、6.13、0.12 mg·L−1和20、0.14、4.06、0.08 mg·L−1。当进水C/N≥7.5时,AAOA系统出水水质可以达到城镇污水高标准除磷脱氮要求。杨雪莲[11]通过改变缺氧池容积强化了AAO系统除磷脱氮效率,但进水C/N为7时,其系统出水${\rm{NH}}_4^{+} $ -N和TN质量浓度仍为7.65 mg·L−1和11.08 mg·L−1;黄庆涛[12]通过外加碳源的方法提高了AOA-SBR工艺除磷脱氮的效果,当进水C/N为7.5时,其出水TN仍高达11.08 mg·L−1;李茂桥[13]通过延长缺氧停留时间改良了A-AAO工艺,但其出水仅能达到现行城镇污水厂污染物排放一级B排放标准,仍未实现高标准除磷脱氮。本研究研发的AAOA系统除磷脱氮效能得到了大幅提升。为探究系统中的硝化途径,取进水C/N为7.5反应器中的污泥进行批次实验,通过在进水中添加碳源和自养硝化抑制剂ATU进行实验,结果见图4(a)。系统的硝化包括自养硝化与异养硝化,且自养硝化占据主导。同时,为探究系统中反硝化途径,取C/N为7.5的反应器中2 L污泥进行批次实验。取出污泥离心分离后用纯水清洗去除残余COD,用纯水定容至2 L,以乙酸钠为碳源,使COD为200 mg·L−1,厌氧反应120 min,反应结束后,将活性污泥离心分离,再以纯水洗去剩余COD,分为2份进行实验,投加磷酸二氢钾维持其磷酸盐浓度。其中,实验1为好氧曝气(DO为2~3 mg·L−1);实验2加入初始质量浓度为20 mg·L−1硝酸盐进行缺氧搅拌,反应时间均为120 min。缺氧最大除磷速率与好氧最大除磷速率的比值即为反硝化聚磷菌和聚磷菌的比例。结果如图4(b)所示,反硝化聚磷菌(DPAOs)占聚磷菌(PAOs)比例为53%,证实系统中反硝化除磷为系统主要脱氮路径之一。
-
实际城镇污水C/N为7.5左右时,AAOA反应器处理效能实验结果见表3和图5。
由图5可以看出,当进水
${\rm{NH}}_4^{+} $ -N、TN、PO43--P质量浓度分别为38.82、40.60、4.92 mg·L−1时,在厌氧段,${\rm{NH}}_4^{+} $ -N质量浓度因污泥回流液稀释作用下降到11.38 mg·L−1;反硝化菌利用进水中的碳源对 NO2--N、NO3--N进行反硝化脱氮,TN质量浓度下降至12.40 mg·L−1;同时,聚磷菌利用进水中碳源进行释磷,PO43--P质量浓度升高至10.88 mg·L−1。随后在缺氧段Ⅰ,因混合液回流稀释作用${\rm{NH}}_4^{+} $ -N质量浓度降低至6.29 mg·L−1,在反硝化聚磷菌作用下PO43--P质量浓度降至4.13 mg·L−1,通过异养反硝化菌和反硝化聚磷菌协同脱氮,TN质量浓度降低至6.88 mg·L−1。在好氧段,在硝化菌作用下${\rm{NH}}_4^{+} $ -N质量浓度大幅降低至0.52 mg·L−1,NO3--N质量浓度升高至5.02 mg·L−1,在好氧反硝化菌作用下TN质量浓度下降至5.69 mg·L−1,同时,通过聚磷菌吸磷,PO43--P质量浓度降低至0.38 mg·L−1。进入缺氧段Ⅱ后,反硝化聚磷菌、异养反硝化菌利用内碳源进行反硝化除磷脱氮,NO3--N、TN、PO43--P质量浓度进一步分别下降至3.51、4.07、0.23 mg·L−1,${\rm{NH}}_4^{+} $ -N质量浓度基本保持不变。反应器出水NH4+-N、TN和PO43--P平均质量浓度分别为0.40、3.57 、0.21 mg·L−1,平均去除率分别达到98.76%、89.03%和95.55%,出水水质达到北京市《城镇污水处理厂污染物排放标准》A标准[1],说明AAOA系统可实现城镇污水高标准除磷脱氮。[1]
-
将采集的生物样品送至生物公司进行高通量测序测试。包括基因组DNA的提取、PCR扩增、荧光定量、Miseq文库构建、Miseq测序、OTU 聚类、分类学分析,使用Mothur软件将样品的Unique Reads序列比对到RDP数据库中,进行物种注释,通过和数据库进行比对,进行物种分类,并分别在门、属水平统计污泥样品的群落组成。如图6所示,系统优势菌门分别为变形菌门Proteobacteria (33.16%)、绿弯菌门Chloroflexi (28.62%)、拟杆菌门Bacteroidetes (18.43%)、迷踪菌门Elusimicrobia (12.75%)、Saccharibacteria (1.30%)、硝化螺旋菌门Nitrospirae (1.20%)。其中,变形菌门Proteobacteria相对丰度最高,大多数脱氮除磷菌属均归属于变形菌门[14];拟杆菌门中某些菌属具有好氧反硝化和除磷功能,硝化螺旋菌门中某些菌属具有硝化功能[15]。系统内优势硝化功能菌属主要有Aeromonas (3.34%)、Nitrospira (1.20%);优势反硝化功能菌属主要有好氧反硝化菌属Aeromonas (3.34%)、反硝化聚磷菌属Comamonadaceae_unclassified (3.03%)、好氧反硝化菌属Uliginosibacterium (1.85%);优势除磷功能菌属主要有聚磷菌Candidatus_Accumulibacte (4.39%)、反硝化聚磷菌属Comamonadaceae_unclassified (3.03%)、Dechloromonas (0.59%)。
其中,气单胞菌Aeromonas是一种新型的异养氨氧化细菌(AOBs)[16],同时具有好氧反硝化功能,系统脱氮性能与此物种密切相关;硝化螺旋菌属Nitrospira是一种常见的硝化菌属(Nitrifier),可将亚硝酸盐氧化成硝酸盐;Comamonadaceae_unclassified通常为好氧细菌,部分Comamonadaceae被确定为反硝化细菌[17-18],有研究者发现其具有短程硝化、反硝化聚磷功能[19];Uliginosibacterium为具有好氧反硝化能力的菌群,能直接将亚硝态氮反硝化[20];Candidatus_Accumulibacter为聚磷菌[21]是一种β-变形菌;Accumulibacter phosphatis是污水处理厂常见的细菌,能提高生物除磷能力,是一种聚磷酸盐积累的有机体[22];Dechloromonas为反硝化聚磷菌属[23]。上述结果表明:在碳源有限的条件下,AAOA系统通过异养、自养硝化,异养反硝化、反硝化聚磷、好氧反硝化协同作用可实现高标准脱氮,通过聚磷菌属和反硝化聚磷菌属协同作用可实现高标准除磷。
-
1)当进水C/N为6、7.5、9时,AAOA系统TN平均去除率分别为74.12%、84.90%、90.05%,PO43--P平均去除率分别为48.29%、97.68%、98.5%;AAOA系统出水COD、
${\rm{NH}}_4^{+} $ -N、TN、PO43--P分别为16、0.04、10.49、3.15 mg·L−1、18、0.05、6.13、0.12 mg·L−1和20、0.14、4.06、0.08 mg·L−1。当进水C/N≥7.5时,AAOA系统出水水质可以达到城镇污水高标准除磷脱氮要求。2)在温度为23~30 ℃时,有机物、氮、磷负荷分别为0.40~0.76、0.08~0.12、0.01~0.02 kg·(m3·d) -1,水力停留时间为8 h;在不投加碳源条件下,城镇污水AAOA中试系统出水
${\rm{NH}}_4^{+} $ -N、TN和PO43--P平均质量浓度分别为0.40、3.57 、0.21 mg·L−1,平均去除率分别达到98.76%、89.03%和95.55%。AAOA中试系统可以实现对城镇污水高标准除磷脱氮。3) AAOA系统内硝化功能菌属主要有Aeromonas 、Nitrospira,反硝化功能菌属主要有Aeromonas、Comamonadaceae_unclassified、Uliginosibacterium;除磷功能菌属主要有Candidatus_Accumulibacte 、Comamonadaceae_unclassified 、Dechloromonas。在碳源有限条件下,AAOA系统通过异养、自养硝化,异养反硝化、反硝化聚磷、好氧反硝化多路径协同作用实现了高标准除磷脱氮。
城镇污水AAOA高标准除磷脱氮技术开发与应用
Development and application of AAOA high-standard phosphorus and nitrogen removal technology for urban sewage
-
摘要: 针对城镇污水在高标准除磷脱氮过程中碳源不足的问题,提出了基于多路径协同的AAOA除磷脱氮技术,探究了AAOA系统实现高标准除磷脱氮对进水C/N的要求,并对实际城镇污水处理进行了实验研究。结果表明:当进水C/N分别为6、7.5、9时,系统TN去除率分别为74.12%、84.90%、90.05%,TP去除率分别为48.29%、97.68%、98.50%;当进水C/N≥7.5时,系统可以实现高标准脱氮除磷。16S rRNA高通量测序结果表明:系统中脱氮除磷功能菌属主要有Aeromonas、Nitrospira、Aeromonas、Comamonadaceae_unclassified、Uliginosibacterium、Saccharibacteria_norank、Candidatus_Accumulibacter、Aeromonas、Pseudomonas、Dechloromonas,系统通过自养硝化、异养硝化、异养反硝化、反硝化聚磷、好氧反硝化等多条路径协同作用实现了高标准除磷脱氮。同时,采用AAOA系统处理城镇污水,当城镇污水进水C/N为7.5时,系统出水
${\rm{NH}}_4^{+} $ -N、TN和PO43--P平均质量浓度分别为0.40、3.57、0.21 mg·L−1,平均去除率分别达到98.76%、89.03%和95.55%,即无需外加碳源可实现城镇污水的高标准除磷脱氮。Abstract: Aiming at the problem of insufficient carbon source in the process of high standard phosphorus and nitrogen removal in urban sewage, an AAOA phosphorus and nitrogen removal technology based on multi-path coordination was proposed. The requirements of influent C/N in AAOA system for high standard phosphorus and nitrogen removal and the actual urban sewage treatment were studied. The results showed that when the influent COD/TN were 6, 7.5 and 9, the TN removal rates were 74.12%, 84.90% and 90.05%, respectively, and the TP removal rates were 48.29%, 97.68% and 98.50%, respectively; when the influent C/N increased to 7.5 and higher values, the system could realize the high-standard removal of phosphorus and nitrogen. The results of 16SrRNA high-throughput sequencing indicated that the functional bacteria for nitrogen and phosphorus removal in the system mainly included Aeromonas, Nitrospira, Aeromonas, Comamonadaceae _ unclassified, Uliginosibacterium, Saccharibacteria_norank, Candidatus_Accumulibacter, Aeromonas,Pseudomonas and Dechloromonas. The system realized high-standard removal of nitrogen and phosphorus through autotrophic nitrification, heterotrophic nitrification, synergistic action of denitrifying phosphorus accumulation, heterotrophic denitrification and aerobic denitrification. At the same time, when AAOA was used to treat municipal wastewater with the influent C/N of 7.5, the average concentrations of${\rm{NH}}_4^{+} $ -N, TN and PO43--P in the effluent of AAOA system were 0.40, 3.57, 0.21 mg·L-1, and the average removal rates were 98.76%, 89.03% and 95.55%, respectively. High standard phosphorus and nitrogen removal of urban sewage can be achieved without additional carbon source.-
Key words:
- urban sewage /
- AAOA /
- phosphorus and nitrogen removal /
- C/N /
- high standard
-
-
表 1 小试实验水质
Table 1. Quality of wastewater in lab test
C/N COD和氮磷质量浓度/(mg·L−1) COD -N${\rm{NH}}_4^{+} $ TN PO43--P 6 254±4 38.52±0.37 40.50±0.57 5.40±0.34 7.5 318±5 38.83±0.78 40.56±1.05 5.13±0.26 9 371±5 39.55±1.36 40.85±1.62 5.30±0.34 表 2 城镇污水实验水质
Table 2. Experimental water quality of urban sewage
统计
值pH COD和氮磷质量浓度/(mg·L−1) COD -N${\rm{NH}}_4^{+} $ TN PO43--P 范围 7.00~8.00 148~306 19.00~43.00 21.00~44.00 2.10~5.60 均值 7.45 224 31.00 33.00 3.60 表 3 实际城镇污水AAOA脱氮除磷效能
Table 3. Nitrogen and phosphorus removal efficiency of AAOA treating actual urban sewage
检测指标 进水检测值/(mg·L−1) 出水检测值/(mg·L−1) 平均去除率/% 范围 平均值 范围 平均值 -N${\rm{NH}}_4^{+} $ 24.10~39.29 32.37±3.78 0.16~0.68 0.40±0.15 98.76 TN 24.81~39.65 32.92±3.71 2.44~4.91 3.57±0.61 89.03 PO43--P 3.21~5.63 4.85±0.58 0.05~0.36 0.21±0.07 95.55 -
[1] 蔡木林, 卢延娜, 刘琰, 等. 城镇污水处理厂出水排放限值分级及提标成本研究[J]. 环境科学研究, 2021, 34(7): 1562-1568. [2] 李思敏, 杜国帅, 唐锋兵. 改良A~2/O工艺对低碳源污水的脱氮除磷性能分析[J]. 中国给水排水, 2013, 29(12): 25-29. doi: 10.3969/j.issn.1000-4602.2013.12.007 [3] 曹贵华. 改良A~2/O分段进水工艺处理低C/N市政废水的性能与优化控制[D]. 北京: 北京工业大学, 2013. [4] CAO Y, VAN LOOSDRECHT M C M, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383. doi: 10.1007/s00253-016-8058-7 [5] BOUGARD D, BERNET N, CHÈNEBY D, et al. Nitrification of a high-strength wastewater in an inverse turbulent bed reactor: Effect of temperature on nitrite accumulation[J]. Process Biochemistry, 2006, 41(1): 106-113. doi: 10.1016/j.procbio.2005.03.064 [6] KERRN-JESPERSEN J P, HENZE M. Biological phosphorus uptake under anoxic and aerobic conditions[J]. Water Research, 1993, 27(4): 617-24. doi: 10.1016/0043-1354(93)90171-D [7] 罗亚红, 李冬, 曾辉平, 等. 末端间歇曝气A~2/O工艺处理低碳氮(磷)比生活污水[J]. 哈尔滨工业大学学报, 2015, 47(2): 79-86. [8] 陈永志, 彭永臻, 王建华, 等. A~2/O-曝气生物滤池工艺处理低C/N比生活污水脱氮除磷[J]. 环境科学学报, 2010, 30(10): 1957-1963. [9] 杨婷, 杨娅, 刘玉香. 异养硝化-好氧反硝化的研究进展[J]. 微生物学通报, 2017, 44(9): 2213-2222. [10] 刘钢, 谌建宇, 黄荣新, 等. 新型后置反硝化工艺处理低C/N(C/P)比污水脱氮除磷性能研究[J]. 环境科学学报, 2013, 33(11): 2979-2986. [11] 杨雪莲, 陈莹, 杨文娟, 等. 改变缺氧池容积强化A~2/O工艺脱氮除磷效率[J]. 水处理技术, 2021, 47(1): 125-129. [12] 黄庆涛, 宋秀兰. 外加碳源对AOA-SBR工艺脱氮除磷效果的影响[J]. 工业水处理, 2017, 37(9): 26-29. doi: 10.11894/1005-829x.2017.37(9).026 [13] 李茂侨, 陈志强, 温沁雪. 延长缺氧水力停留时间对A-AAO工艺氮磷去除影响的研究[J]. 环境科学与管理, 2018, 43(1): 102-107. doi: 10.3969/j.issn.1673-1212.2018.01.024 [14] 高晨晨, 郑兴灿, 游佳, 等. 城市污水脱氮除磷系统的活性污泥菌群结构特征[J]. 中国给水排水, 2015, 31(23): 37-42. [15] 彭永臻, 钱雯婷, 王琦, 等. 基于宏基因组的城市污水处理厂生物脱氮污泥菌群结构分析[J]. 北京工业大学学报, 2019, 45(1): 95-102. [16] CHEN M, WANG W, FENG Y, et al. Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp HN-02[J]. Bioresource Technology, 2014, 167: 456-461. doi: 10.1016/j.biortech.2014.06.001 [17] CHEN X, QIAN W, KONG L, et al. Performance of a suspended biofilter as a new bioreactor for removal of toluene[J]. Biochemical Engineering Journal, 2015, 98: 56-62. doi: 10.1016/j.bej.2015.02.025 [18] CALDERER M, MARTI V, DE PABLO J, et al. Effects of enhanced denitrification on hydrodynamics and microbial community structure in a soil column system[J]. Chemosphere, 2014, 111: 112-119. doi: 10.1016/j.chemosphere.2014.03.033 [19] 周莉, 李正魁, 王易超, 等. 纯种氨氧化菌短程反硝化特性[J]. 环境工程学报, 2013, 7(4): 1219-1224. [20] SONG J, KIM M, PARK M. S, et al. Uliginosibacterium aquaticum sp. nov., Isolated from a Freshwater Lake[J]. Current Microbiology, 2021, 78: 3381-3387. doi: 10.1007/s00284-021-02605-7 [21] ZENG W, LI B, WANG X, et al. Influence of nitrite accumulation on "Candidatus Accumulibacter" population structure and enhanced biological phosphorus removal from municipal wastewater[J]. Chemosphere, 2016, 144: 1018-1025. doi: 10.1016/j.chemosphere.2015.08.064 [22] KOLAKOVIC S, FREITAS E, REIS M, et al. Accumulibacter diversity at the sub-clade level impacts enhanced biological phosphorus removal performance[J]. Water Research, 2021, 199: 117210-117210. doi: 10.1016/j.watres.2021.117210 [23] TERASHIMA M, YAMA A, SATO M, et al. Culture-dependent and independent identification of polyphosphate-accumulating Dechloromonas spp. predominating in a full-scale oxidation ditch wastewater treatment plant[J]. Microbes & Environments, 2016, 31(4): 449-455. -