-
大部分时间人在室内度过,室内空气质量对人体健康至关重要。氨气(NH3)在一定浓度下会刺激眼鼻喉,引起头疼、恶心,甚至造成永久性伤害[1]。室内NH3主要与化学品使用、新陈代谢、墙体、家具材料、垃圾堆放等有关[2-7]。尽管NH3背景浓度较低,但在室内进行不同活动(做饭、打扫等)时NH3浓度可上升至较高水平[8]。有调查显示北京某公司办公室NH3浓度高达2—5 mg·m−3,远高于同期室外浓度[9]。全国住宅室内空气污染物调查显示NH3平均含量为122 μg·m−3[10],高于室外环境平均水平,表明室内NH3是大气环境NH3的来源之一。
NH3是大气中最重要的碱性气体,可与大气中的H2SO4和HNO3反应生成(NH4)2SO4、NH4HSO4和NH4NO3等二次无机气溶胶粒子,对霾的形成有很大贡献[11-12]。在我国北方霾高发及污染严重地区已将NH3农业排放削减纳入《2016—2020年大气污染防治计划》。也有研究表明NH3减排减少细颗粒物污染和氮沉降,但会加剧酸雨问题[13],因此需要详细了解NH3排放情况,科学制定NH3减排措施,进而有效地控制颗粒物污染。根据排放清单[14-19],全国氨态氮总排放量为5.9—13.1 Tg·a−1 NH3-N,但各清单均未涉及室内源[14-19]。大多室内NH3的研究是关于畜禽养殖场的[20-21],对非农用建筑的研究相对空白。在室内外NH3的联系上,建立室内外污染物浓度比(indoor to outdoor ratio,I/O)是直观和常用的方法[5, 22-23]。由于室内外NH3均有直接排放源,I/O值的实际作用存在一定的局限性[24]。另外,目前尚无长期、连续监测结果用以研究室内NH3浓度变化特征。
本研究通过在线监测获得室内外NH3的浓度水平,分析其变化特征及相互间的联系,通过建立数学模型估算北京市室内NH3源对大气环境的相对贡献。本工作可对全面控制大气颗粒物污染制定“氨减排”措施提供科学依据,同时可进一步了解NH3对室内空气质量的影响。
室内氨气浓度变化特征及其环境意义
Variations in indoor ammonia concentration and its environmental significance
-
摘要: 通过在线监测北京市海淀区室内和室外氨气(NH3)浓度,以了解室内外氨气含量差异、变化特征及其影响因素。根据监测结果估算室内NH3源对环境大气中NH3的可能贡献,并分析其环境意义。结果表明,室内NH3与室外NH3浓度的季节变化类似,均表现为夏季高、冬季低的特点,其日均值之间具有显著的相关性。室内NH3浓度通常高于室外,NH3日均值浓度室内比室外平均高出257% (3%—595%)。在同一建筑内不同房间里的浓度差异较大(从几μg·m−3到 mg·m−3),厕所间的浓度水平较高(小时均值可高于1.09 mg·m−3)。室内NH3浓度日变化与室内相对湿度及温度的日变化之间具有很好的相关性,但室内NH3与后二者的相关性在暖季与在冷季截然相反。暖季室内NH3浓度白天低夜晚高,而冷季白天高夜晚低。中央空调开启与否对室内NH3浓度日变化有较大的影响。通过建立数学模型估算得到室内NH3源对大气环境中NH3的排放量贡献为0.09—1.11 Gg ·a−1NH3-N,约占北京市总排放量的0.1%—1.5%,与工业、生物质燃烧、土壤等排放量相近,低于交通排放(5.20%)。由于城区集中大部分的建筑,室内NH3对城区大气NH3的直接贡献可能具有一定的意义,值得进一步研究。Abstract: Online measurements of indoor and outdoor ammonia (NH3) were conducted in Haidian district, Beijing, to investigate the indoor-outdoor differences in the NH3 concentration, variation characteristics and influencing factors. The possible contribution of indoor NH3 to ambient air was estimated and its environmental significance was discussed based on the measurement results. Indoor and outdoor NH3 showed similar seasonal variations, with high levels in summer and low in winter, and the daily mean values of indoor and outdoor NH3 were significantly correlated. The level of indoor NH3 were on average 257% higher than those of outdoor NH3, with a range of 3%—595%. Large variations (from several μg·m-3 to mg·m−3) were found in NH3 concentrations in different rooms within a same building, and the highest hourly mean value occurred in a toilet (about 1.09 mg·m−3). In the warm season, the diurnal cycle of indoor NH3 resembled that of relative humidity and reversed that of temperature, showing lower levels during the daytime and higher at night. In the cold season, however, the situations were completely opposite. The central air conditioning was found to greatly influence the diurnal variation of indoor NH3 concentration. The contribution of indoor NH3 to ambient NH3 was estimated using a model to be 0.09—1.11 Gg·a−1 NH3-N, accounting for approximately 0.1%—1.5% of the total emission in Beijing, which is comparable to emissions from industry, biomass combustion, and soil, but lower than that from transportation (5.20%). Due to the dense buildings in urban areas, the direct contribution of indoor NH3 to urban air might have certain significance, which is worth further studies.
-
Key words:
- indoor ammonia /
- outdoor ammonia /
- variation /
- emission
-
表 1 北京不同室内NH3平均浓度水平(μg·m−3)
Table 1. Indoor NH3 levels in different areas in Beijing (μg·m−3)
地点
Site房间类型
Room style平均值
Mean标准差
Standard deviation最小值
Min最大值
Max测量时间
Sample time某住宅 厕所 1 87.19 48.77 19.81 130.49 2018.10.5 厨房 62.68 4.45 55.83 69.29 2018.10.3—4 客厅 61.37 25.37 35.96 86.69 2018.10.4 卧室 1 46.22 12.05 32.39 54.48 2018.10.3 卧室 2 64.90 9.77 56.76 88.20 2018.10.5 卧室 3 41.30 8.13 32.89 58.31 2018.10.4 某公司 办公室 1 25.21 12.54 17.60 71.28 2018.2.12—14 53.88 10.11 34.02 79.31 2018.3.29—30 某研究院 办公室 2 254.31 52.17 155.15 320.27 2010.8.9—12a 14.49 2.71 8.74 17.21 2011.3.22-24b 28.36 3.12 23.03 35.45 2011.4.11—12 132.09 6.13 121.65 142.01 2011.6.1—14c 停车场 165.13 57.09 31.97 360.55 2018.8.13—15 某研究所 办公室 3 85.65 19.58 51.77 106.46 2018.8.14—15 办公室 4 84.28 9.14 49.72 94.83 2018.8.15—16 办公室 5 72.09 2.09 67.06 76.46 2018.8.17—20 某大学实验楼 办公室 6 85.54 4.46 71.10 91.95 2018.9.12—13 办公室 7 50.83 10.09 27.96 68.71 2018.9.13—15 办公室 8 58.56 11.64 30.96 69.60 2018.9.11—12 实验室 32.40 7.31 0.00 52.54 2018.9.15—18 厕所 2 68.32 12.64 61.52 117.66 2018.9.19—20 厕所 3d 574.11 334.63 112.65 1087.80 2018.9.18—19 走廊 73.13 45.35 17.07 201.87 2018.9.20—21 注:a.室外为雾霾天气;b.室外为大风天气;c.办公楼内1楼装修;d.厕所未通风.
Notes: a. haze day; b. windy day; c. The first floor in decoration; d. without ventilation.表 2 中国不同城市室外NH3浓度水平
Table 2. Outdoor NH3 concentrations in different cities in China
地点
Site时间
Sample time浓度/(μg·m−3)
Concentration参考文献
Reference北京 2019 17.90±10.78 This study Feb 2008—Jul 2010 14.22±10.62 (2008), 18.13±13.82 (2009) Meng et al., 2011 [33] Jan—Feb 2007, 8 5.51±3.81 (winter), 25.44±6.91 (summer) Lanniello et al., 2010 [34] Jun—Aug 2009 29.79±11.9 Meng et al., 2017[35] 上海 Apr 2014—Apr 2015 5.51±3.91 Chang et al., 2015[26] 2014 4.8±2.0/8.0±4.3/4.3±1.5/2.8±1.0 (spring/summer/autumn/winter) Wang et al., 2018[29] 西安 Apr 2006—Apr 2007 12.92/6.41/20.33 (annual/winter/summer) Cao et al., 2009 [36] 南京 Aug—Sep 2012 1.30±1.80 (industrial area) Zheng et al., 2015 [37] Jul—Aug 2013 6.71 (near road) Wang et al., 2016 [38] 广州 Nov 2010 1.60 Wang et al., 2013 [39] 香港 Oct 2003—May 2006 0.70 (rooftop), 7.11 (near road) Tanner, 2009 [40] 固城 Mar 2016—May 2017 22.2±12.8 Kuang et al., 2019[41] -
[1] AMSHEL C E, FEALK M H, PHILLIPS B J, et al. Anhydrous ammonia burns case report and review of the literature [J]. Burns, 2000, 26(5): 493-497. doi: 10.1016/S0305-4179(99)00176-X [2] BAI Z, DONG Y, WANG Z, et al. Emission of ammonia from indoor concrete wall and assessment of human exposure [J]. Environment International, 2006, 32(3): 303-311. doi: 10.1016/j.envint.2005.06.002 [3] EATOUGH D J, HANSEN L D, LEWIS E A. The chemical characterization of environmental tobacco smoke [J]. Environmental Technology, 1990, 11(11): 1071-1085. doi: 10.1080/09593339009384961 [4] LARSON T, COVERT D, FRANK R, et al. Ammonia in the human airways: neutralization of inspired acid sulfate aerosols [J]. Science, 1977, 197(4299): 161-163. doi: 10.1126/science.877545 [5] ŠIŠOVIĆ A, ŠEGA K, KALINIĆ N. Indoor/outdoor relationship of ammonia concentrations in selected office buildings [J]. Science of the Total Environment, 1987, 61: 73-77. doi: 10.1016/0048-9697(87)90357-3 [6] 王澎. 室内空气质量及污染控制 [J]. 环境科学与技术, 2001(2): 26-27. doi: 10.3969/j.issn.1003-6504.2001.02.008 WANG P. Indoor air quality and pollution control [J]. Environmental Science and Technology, 2001(2): 26-27(in Chinese). doi: 10.3969/j.issn.1003-6504.2001.02.008
[7] 古颖纲, 王伯光, 杨俊, 等. 城市污水厂氨气的来源及排放因子研究 [J]. 环境化学, 2012, 31(5): 708-713. GU Y G, WANG B G, YANG J, et al. Ammonia source and emission factor in municipal wastewater treatment plants [J]. Environmental Chemistry, 2012, 31(5): 708-713(in Chinese).
[8] AMPOLLINI L, KATZ E F, BOURNE S, et al. Observations and contributions of real-time indoor ammonia concentrations during HOMEChem [J]. Environmental Science & Technology, 2019, 53(15): 8591-8598. [9] LINDGREN T. A case of indoor air pollution of ammonia emitted from concrete in a newly built office in Beijing [J]. Building and Environment, 2010, 45(3): 596-600. doi: 10.1016/j.buildenv.2009.07.014 [10] XU D, SHANG B, CAO Z. Investigation of key indoor air pollutants in residence in part of the cities in China [J]. Journal of Hygiene Research, 2007, 36(4): 473-476. [11] NI J Q, HEBER A J, LIM T T, et al. Ammonia emission from a large mechanically-ventilated swine building during warm weather [J]. Journal of Environment Quality, 2000, 29(3): 751-758. [12] SEINFELD J H, PANDIS S N, NOONE K. Atmospheric chemistry and physics: From air pollution to climate change[M]. 2nd. Hoboken, New Jersey, United States: John Wiley & Sons, Inc., 2006. [13] LIU M, HUANG X, SONG Y, et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain [J]. Proceedings of the National Academy of Sciences, 2019, 116(16): 7760-7765. doi: 10.1073/pnas.1814880116 [14] HUANG X, SONG Y, LI M, et al. A high-resolution ammonia emission inventory in China [J]. Global Biogeochemical Cycles, 2012, 26: GB1030. doi: 10.1029/2011GB004161 [15] KANG Y, LIU M, SONG Y, et al. High-resolution ammonia emissions inventories in China from 1980 to 2012 [J]. Atmospheric Chemistry and Physics, 2016, 16(4): 2043-2058. doi: 10.5194/acp-16-2043-2016 [16] KLIMONT Z. Current and future emissions of ammonia in China[C]. 10th International Emission Inventory Conference: "One Atmosphere, One Inventory, Many Challenges". US EPA, 2001. [17] KONG L, TANG X, ZHU J, et al. Improved inversion of monthly ammonia emissions in China based on the Chinese ammonia monitoring network and ensemble Kalman filter [J]. Environmental Science & Technology, 2019, 53(21): 12529-12538. [18] PAULOT F, JACOB D J, PINDER R W, et al. Ammonia emissions in the united states, european union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (masage_NH3) [J]. Journal of Geophysical Research:Atmospheres, 2014, 119: 4343-4364. doi: 10.1002/2013JD021130 [19] ZHANG X, WU Y, LIU X, et al. Ammonia emissions may be substantially underestimated in China [J]. Environmental Science & Technology, 2017, 52(21): 12089-12096. [20] LIU D, WANG F, MA L, et al. Estimation of NH3 emission factor for pig manure in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(4): 218-224. [21] HILL R A, SMITH K, RUSSELL K, et al. Emissions of ammonia from weeping wall stores and earth-banked lagoons determined using passive sampling and atmospheric dispersion modelling [J]. Journal of Atmospheric Chemistry, 2008, 59(2): 83-98. doi: 10.1007/s10874-007-9077-7 [22] FISCHER M L, LITTLEJOHN D, LUNDEN M M, et al. Automated measurements of ammonia and nitric acid in indoor and outdoor air [J]. Environmental Science & Technology, 2003, 37(10): 2114-2119. [23] LI Y, HARRISON R M. Comparison of indoor and outdoor concentrations of acid gases, ammonia and their associated salts [J]. Environmental Technology, 1990, 11(4): 315-326. doi: 10.1080/09593339009384868 [24] CHEN C, ZHAO B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor [J]. Atmospheric Environment, 2011, 45(2): 275-288. doi: 10.1016/j.atmosenv.2010.09.048 [25] LI M, WESCHLER C J, BEKÖ G, et al. Human ammonia emission rates under various indoor environmental conditions [J]. Environmental Science & Technology, 2020, 54(9): 5419-5428. [26] CHANG Y H, ZOU Z, DENG C R, et al. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai [J]. Atmospheric Chemistry and Physics, 2015, 15(23): 34719-34763. [27] ABBATT J P D, WANG C. The atmospheric chemistry of indoor environments [J]. Environmental Science:Processes & Impacts, 2020, 22(1): 25-48. [28] BEHERA S N, SHARMA M, ANEJA V P, et al. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies [J]. Environment Science Pollution Research, 2013, 20(11): 8092-8131. doi: 10.1007/s11356-013-2051-9 [29] WANG R, YE X, LIU Y, et al. Characteristics of atmospheric ammonia and its relationship with vehicle emissions in a megacity in China [J]. Atmospheric Environment, 2018, 182: 97-104. doi: 10.1016/j.atmosenv.2018.03.047 [30] SOMMER S G, OLESEN J E, CHRISTENSEN B T. Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry [J]. The Journal of Agricultural Science, 1991, 117(1): 91-100. doi: 10.1017/S0021859600079016 [31] SHANGGUAN W, DAI Y, LIU B, et al. A China data set of soil properties for land surface modeling [J]. Journal of Advances in Modeling Earth Systems, 2013, 5: 212. doi: 10.1002/jame.20026 [32] ZHAO X, XIE Y, XIONG Z, et al. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu Lake region, China [J]. Plant and Soil, 2009, 319: 225-234. doi: 10.1007/s11104-008-9865-0 [33] MENG Z Y, LIN W L, JIANG X M, et al. Characteristics of atmospheric ammonia over Beijing, China [J]. Atmospheric Chemistry and Physics, 2011, 11(12): 6139-6151. doi: 10.5194/acp-11-6139-2011 [34] LAMARQUE J F, BOND T C, EYRING V, et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application [J]. Atmospheric Chemistry and Physics, 2010, 10(15): 7017-7039. doi: 10.5194/acp-10-7017-2010 [35] MENG Z, LIN W, ZHANG R, et al. Summertime ambient ammonia and its effects on ammonium aerosol in urban Beijing, China [J]. Science of The Total Environment, 2017, 579: 1521-1530. doi: 10.1016/j.scitotenv.2016.11.159 [36] CAO J, ZHANG T, CHOW J, et al. Characterization of atmospheric ammonia over Xi'an, China [J]. Aerosol and Air Quality Research, 2009, 9: 277-289. doi: 10.4209/aaqr.2008.10.0043 [37] ZHENG J, MA Y, CHEN M, et al. Measurement of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass spectrometry [J]. Atmospheric Environment, 2015, 102: 249-259. doi: 10.1016/j.atmosenv.2014.12.002 [38] WANG W, WANG S, XU J, et al. Gas-phase ammonia and PM2.5 ammonium in a busy traffic area of Nanjing, China [J]. Environmental Science and Pollution Research, 2016, 23(2): 1691-1702. doi: 10.1007/s11356-015-5397-3 [39] WANG Y, ZHANG Q Q, HE K, et al. Sulfate-nitrate-ammonium aerosols over China: Response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia [J]. Atmospheric Chemistry and Physics, 2013, 13(5): 2635-2652. doi: 10.5194/acp-13-2635-2013 [40] TANNER P. Vehicle-related ammonia emissions in Hong Kong [J]. Environmental Chemistry Letters, 2009, 7: 37-40. doi: 10.1007/s10311-007-0131-0 [41] KUANG Y, XU W, LIN W, et al. Explosive morning growth phenomena of NH3 on the North China Plain: Causes and potential impacts on aerosol formation [J]. Environmental Pollution, 2019, 257: 113621. [42] IANNIELLO A, SPATARO F, ESPOSITO G, et al. Occurrence of gas phase ammonia in the area of Beijing (China) [J]. Atmospheric Chemistry and Physics, 2010, 10(19): 9487-9503. doi: 10.5194/acp-10-9487-2010 [43] CABRERA M L, KISSEL D E, CRAIG J R, et al. Relative humidity controls ammonia loss from urea applied to loblolly pine [J]. Soil Science Society of America Journal, 2010, 74(2): 543-549. doi: 10.2136/sssaj2009.0220 [44] 孙一坚. 工业通风[M]. 北京: 中国建筑工业出版, 1984. SUN Y J. Industrial ventilation[M]. Beijing: China Construction Industry Publication, 1984(in Chinese).