-
近年来,基于
${\rm{SO}}_4^ - \cdot $ (E0=2.5~3.1 V)的高级氧化技术(sulfate radical based advanced oxidation processes, SR-AOPs)由于其具有氧化性强、使用范围广等优点越来越广泛的被应用于污水和地下水的处理[1]。特别是由于过硫酸盐稳定性强、溶解性好和不易挥发,而且具有适用pH范围广和产生的${\rm{SO}}_4^ - \cdot $ 的比HO·寿命长等优点,更有利于降解高浓度有机污染物[2]。氯离子(Cl−)是影响污水和地下水处理的最重要的影响因素之一。水体中含有大量的盐类(主要是NaCl),其中湖水<1 000 mg·L−1、苦咸水为1 000 ~10 000 mg·L−1和海水为10 000~35 000 mg·L−1[3]。同时,工厂的生产废水中也含有大量Cl−,例如在食品加工厂、石油精炼工艺厂、反渗透工艺出水中均会含有大量的Cl−[3],故在实际水处理中需要考虑Cl−的影响。已有研究[4]表明,Cl−对SR-AOPs有较大的影响,Cl−作为自由基的淬灭剂和金属络合剂可能会影响氧化反应的途径、动力学和反应效率[5]。此外,Cl−能够与过硫酸盐氧化过程中产生的活性物质发生链式反应[6]。在修复沿海含水层和各种受污染的水体时,经常会遇到高浓度Cl−的问题。因此,在应用SR-AOPs氧化处理实际废水中有机物时,需要考虑Cl−的影响。关于Cl−对SR-AOPs氧化过程的影响,目前已有部分研究报道。CHEN等[7]通过热活化过硫酸钠(PS)对对羟基苯甲酸甲酯(MeP)和羟苯乙酯(EtP)进行降解,结果表明,加入10 mmol·L−1的Cl−后,MeP和EtP的降解率分别下降了22.8%和26.0%。MA等[8]通过对热活化PS氧化苯酚时发现,当加入1、10和100 mmol·L−1的Cl−后,苯酚的去除率基本没有发生变化。PENG等[9]利用硫化铜活化PS降解农药阿特拉津(ATZ)时发现,当分别加入4、8和20 mmol·L−1 Cl−后,对ATZ的去除率有较弱的提升,其中加入20 mmol·L−1的Cl−后,ATZ去除率仅提高了约10%。目前关于Cl−对PS氧化过程影响的研究主要考察了Cl−浓度对目标有机物去除率的影响,而对相关的反应机理和反应过程中生成的活性氧化物质尚未有深入的研究。
苯胺是重要的有机化工原料和精细化工中间体,广泛应用于染料、农药、医药、军工、香料和橡胶硫化等行业[10]。苯胺类化合物有毒,有致癌、致畸、致突变“三致”作用,如不经有效处理就直接排放,将会对周围环境产生严重污染[10]。基于此,本研究选择苯胺(AN)作为目标污染物,通过Fe2+活化PS氧化体系去除AN,对不同pH下Cl−对AN去除的影响和作用机理进行了研究,并通过添加淬灭剂对反应过程中的活性物质进行识别,通过对总有机碳(TOC)的测定探究其矿化效果,利用GC-MS对反应过程的中间产物进行了鉴定并依此推断出其可能的反应路径。
氯离子对过硫酸盐氧化苯胺的影响
Effect of chloride ions on the oxidation of aniline using persulfate
-
摘要: 在高级氧化工艺(AOPs)降解有机污染物过程中,卤代消毒副产物(DBPs)的形成已引起了广泛的关注。然而,氯离子(Cl−)在过硫酸盐(PS)降解污染物的过程中的作用机制仍存在争议。基于此,探究了在不同pH下Cl−对PS的作用机理,并对可能的反应途径进行了推断。结果表明:在酸性条件(pH=2.5)下,Cl−可以与PS反应生成HClO,从而可促进对苯胺(AN)的去除,但并不能对AN进行有效矿化,在PS溶液中加入10 mmol·L−1的Cl−后,AN的去除率升高了47.82%,但TOC去除率仅提高了9.78%,且会生成2, 4, 6-三氯苯胺等有害的氯代副产物;相反,在中性(pH=7.5)或碱性条件(pH=11.5)下PS自身能够有效矿化AN,AN的去除率分别提高了57.90%和74.96%,此时TOC去除率分别升高了44.98%和67.15%,而Cl−的作用并不显著。通过加入不同淬灭剂对反应过程中的氧化物质进行了识别,发现PS在碱性条件下会生成羟基自由基(HO·)、硫酸根自由基(
${\rm{SO}}_4^{ - \cdot}$ )和超氧自由基(${\rm{O}}_2^{ - \cdot }$ ),且在反应过程中起主要作用的为HO·。在碱性条件下,当苯胺的去除率为74.96%时,HO·、${\rm{SO}}_4^{ - \cdot}$ 和${\rm{O}}_2^{ - \cdot }$ 对苯胺去除的贡献率分别为51.36%、11.25%和9.79%。对NaCl/PS体系中的产物进行鉴定,检测到7种中间产物,并在此基础上探讨了PS氧化降解AN的可能途径。以上研究结果有助于更好地理解和优化与PS相关的高级氧化技术在实际应用中的污染控制。Abstract: The formation of halogenated disinfection by-products (DBPs) during organic pollutants degradation in advanced oxidation process (AOPs) has raised growing concerns. However, the detailed roles of chlorine ions (Cl−) in pollutant degradation by persulfate (PS) remain controversial so far. Herein, the degradation mechanisms of Cl− on PS at different pH were investigated, and the pathway of reaction process was proposed in the presence/absence of Cl−. The results showed that at acidic condition (pH=2.5), PS could not directly react with AN but could active Cl− to generate HClO. The removal rate of AN increased from 2.95% to 47.82% when 10 mmol·L−1 Cl− was added in PS solution. This process would be helpful to degrade AN, but it cannot completely mineralize AN, and will produce 2, 4, 6-Trichlorobenzenamine and other chlorinated by-products. At neutral (pH=7.5) or alkaline condition (pH=11.5), PS alone can effectively mineralize AN and the impact of Cl− became negligible, the corresponding removal rates of AN increased by 57.90% and 74.96%, of TOC increased by 44.98% and 67.15%, respectively. By adding radical scavengers, we proved that the degradation of AN occurred as a result of reactions initiated by${\rm{SO}}_4^{ \cdot-}$ , HO·, and${\rm{O}}_2^{ - \cdot }$ at alkaline condition, and HO· played the dominant role in the degradation process. When the removal rate of AN was 74.96%, the respective contributions of HO·,${\rm{SO}}_4^{ - \cdot}$ and${\rm{O}}_2^{ - \cdot }$ to AN removal were 51.36%, 11.25% and 9.79%, respectively. Based on the analysis of GC-MS, 7 major intermediate products were identified in NaCl/PS systems. Tentative pathways for the degradation of AN were proposed. Our findings may benefit an improved understanding and optimization of PS-associated AOPs for pollution control in real environmental towards high sustainability and ecological security.-
Key words:
- persulfate /
- chloride ions /
- aniline /
- reactive chlorine species /
- reaction mechanism
-
-
[1] DONG H, HE Q, ZENG G, et al. Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA[J]. Chemical Engineering Journal, 2017, 316: 410-418. doi: 10.1016/j.cej.2017.01.118 [2] QI C, LIU X, LIN C, et al. Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants[J]. Chemical Engineering Journal, 2017, 315: 201-209. doi: 10.1016/j.cej.2017.01.012 [3] KIM C, THAO T, KIM J, et al. Effects of the formation of reactive chlorine species on oxidation process using persulfate and nano zero-valent iron[J]. Chemosphere, 2020, 250: 1262-1266. [4] DAS T N. Reactivity and role of ${\rm{SO}}_5^{ \cdot - }$ radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation[J]. The Journal of Physical Chemistry A, 2001, 105(40): 9142-9155. doi: 10.1021/jp011255h[5] LAAT D J, LE G T, LEGUBE B. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)[J]. Chemosphere, 2004, 55: 715-723. doi: 10.1016/j.chemosphere.2003.11.021 [6] YU X, BARKER J R. Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism[J]. Journal of Physical Chemistry A, 2003, 107: 1313-1324. doi: 10.1021/jp0266648 [7] CHEN Y, DENG P, XIE P, et al. Heat-activated persulfate oxidation of methyl-and ethyl-parabens: Effect, kinetics, and mechanism[J]. Chemosphere, 2017, 168: 1628-1636. doi: 10.1016/j.chemosphere.2016.11.143 [8] MA J, YANG Y, JIANG X, et al. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water[J]. Chemosphere, 2018, 190: 296-306. doi: 10.1016/j.chemosphere.2017.09.148 [9] PENG J, LU X, JIANG X, et al. Degradation of atrazine by persulfate activation with copper sulfide (CuS): Kinetics study, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 354: 740-752. doi: 10.1016/j.cej.2018.08.038 [10] DURAN A, MONTEAGUDO J M, MARTIN I S, et al. Mineralization of aniline using hydroxyl/sulfate radical-based technology in a waterfall reactor[J]. Chemosphere, 2017, 186: 177-184. doi: 10.1016/j.chemosphere.2017.07.148 [11] GAO H, CHEN J, ZHANG Y, et al. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system[J]. Chemical Engineering Journal, 2016, 306: 522-530. doi: 10.1016/j.cej.2016.07.080 [12] WANG Y, ZHAO M, DONG X, et al. Potential of the base-activated persulfate for polymer-plugging removal in low temperature reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 189: 107000. doi: 10.1016/j.petrol.2020.107000 [13] LUTZE H V, KERLIN N, SCHMIDT T C. Sulfate radical-based water treatment in presence of chloride: Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate[J]. Water Research, 2015, 72: 349-360. doi: 10.1016/j.watres.2014.10.006 [14] FANG G, DIONYSIOU D D, WANG Y, et al. Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics[J]. Journal of Hazardous Materials, 2012, 227: 394-401. [15] YUAN R, RAMJAUN S N, WANG Z H, et al. Effects of chloride ion on degradation of acid orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds[J]. Journal of Hazardous Materials, 2011, 196: 173-179. doi: 10.1016/j.jhazmat.2011.09.007 [16] LEI Y, CHEN C S, AI J, et al. Selective decolorization of cationic dyes by peroxymonosulfate: Non-radical mechanism and effect of chloride[J]. RSC Advances, 2015, 6(2): 866-871. [17] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40: 55-91. doi: 10.1080/10643380802039303 [18] CHEN H, ZHANG Z, FENG M, et al. Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite)[J]. Chemical Engineering Journal, 2017, 313: 498-507. doi: 10.1016/j.cej.2016.12.075 [19] CHOI J, CUI M, LEE Y, et al. Hydrodynamic cavitation and activated persulfate oxidation for degradation of bisphenol A: Kinetics and mechanism[J]. Chemical Engineering Journal, 2018, 338: 323-332. doi: 10.1016/j.cej.2018.01.018 [20] QIANG Z, ADAMS C D. Determination of monochloramine formation rate constants with stopped-flow spectrophotometry[J]. Environmental Science & Technology, 2004, 38: 1435-1444. [21] WANG Z Y, SHAO Y, GAO N, et al. Degradation kinetic of phthalate esters and the formation of brominated byproducts in heat-activated persulfate system - ScienceDirect[J]. Chemical Engineering Journal, 2019, 359: 1086-1096. doi: 10.1016/j.cej.2018.11.075 [22] 葛勇建, 蔡显威, 林翰, 等. 碱活化过一硫酸盐降解水中环丙沙星[J]. 环境科学, 2017, 38(12): 5116-5223. [23] 朱杰, 罗启仕, 郭琳, 等. 碱热活化过硫酸盐氧化水中氯苯的试验[J]. 环境化学, 2013, 32(12): 2256-2262. doi: 10.7524/j.issn.0254-6108.2013.12.005 [24] 吴楠, 王三反, 李乐卓, 等. 碱热活化过硫酸盐降解柴油精制废水中的有机硫化合物[J]. 环境污染与防治, 2019, 41(4): 435-444. [25] LOU X Y, GUO Y G, XIAO D, et al. Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation[J]. Environmental Science Pollution Research, 2013, 20: 6317-6323. doi: 10.1007/s11356-013-1678-x [26] FURMAN O S, TEEL A L, WATTS R J. Mechanism of base activation of persulfate[J]. Environmental Science & Technology, 2010, 44(16): 6423-6428. [27] QI C D, LIU X T, MA J, et al. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants[J]. Chemosphere, 2016, 151: 280-288. doi: 10.1016/j.chemosphere.2016.02.089 [28] FURMAN O S, TEEL A L, AHMAD M, et al. Effect of basicity on persulfate reactivity[J]. Journal of Environmental Engineering, 2011, 137: 241-247. doi: 10.1061/(ASCE)EE.1943-7870.0000323 [29] CHEN J, ZHANG L, HUANG T, et al. Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: Radical versus non-radical mechanism[J]. Journal of Hazardous Materials, 2016, 320: 571-580. doi: 10.1016/j.jhazmat.2016.07.038 [30] ANIPSITAKIS G P, DIONYSIOU D D, GONZALEZ M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds: Implications of chloride ions[J]. Environmental Science & Technology, 2006, 40(3): 1000-1007. [31] WALDEMER R H, TRATNYEK P G, JOHNSON R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products[J]. Environmental Science & Technology, 2007, 41(3): 1010-1015. [32] XIE X, ZHANG Y, HUANG W, et al. Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation[J]. Journal of Environmental Sciences, 2012, 24(5): 821-826. doi: 10.1016/S1001-0742(11)60844-9 [33] BRILLAS E, MUR E, SAULEDA R, et al. Aniline mineralization by AOPs: Anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes[J]. Applied Catalysis B: Environmental, 1998, 16(1): 31-42. doi: 10.1016/S0926-3373(97)00059-3 [34] CHEN W S, HUANG C P. Mineralization of aniline in aqueous solution by electro-activated persulfate oxidation enhanced with ultrasound[J]. Chemical Engineering Journal, 2015, 266: 279-288. doi: 10.1016/j.cej.2014.12.100 [35] MADSEN H T, SØGAARD E G, MUFF J. Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2, 6-dichlorobenzamide (BAM) in chloride medium at boron doped diamond (BDD) and platinum anodes[J]. Chemosphere, 2015, 120: 756-763. doi: 10.1016/j.chemosphere.2014.10.058